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. 1. I n t r o d u c t i o n  

I n  t h i s  monograph w e  g ive  a mathematical  a n a l y s i s  of 

s p e c t r a l  methods f o r  mixed i n i t i a l - b o u n d a r y  v a l u e  problems. 

Th i s  t h e o r y  i s  also u s e f u l  for  a n a l y s i s  of a v a r i e t y  of 

f i n i t e  e lement  and f i n i t e  d i f f e r e n c e  methods (see S e c t i o n  5). 

However, before proceeding t o  t h e  formal p r e s e n t a t i o n  of 

the t h e o r y  l e t  us give some simple examples of  t h e  k i n d s  

of behavior  w e  wish t o  e x p l a i n .  

S p e c t r a l  methods invo lve  r e p r e s e n t i n g  t h e  s o l u t i o n  t o  a 

problem as a t r u n c a t e d  series of known f u n c t i o n s  of t h e  inde-  

pendent  v a r i a b l e s .  

b u t  we can  i l l u s t r a t e  it h e r e  by t h e  s t a n d a r d  s e p a r a t i o n  o f  

v a r i a b l e s  s o l u t i o n  t o  t h e  mixed i n i t i a l - b o u n d a r y  v a l u e  problem 

f o r  t h e  h e a t  e q u a t i o n .  

W e  s h a l l  Fake t h i s  i d e a  p r e c i s e  i n  Sec. 2 ,  

Example 1.1: F o u r i e r  s i n e  series s o l u t i o n  of  t h e  h e a t  e q u a t i o n .  

Cons ider  t h e  mixed i n i t i a l - b o u n d a r y  v a l u e  problem 

u ( 0 , t )  = u(?T, t )  = 0 ( t  > 0) 

The s o l u t i o n  is 

(1. l a )  

(1. l b )  

(1. I C )  

(1.2) 



where 

w i t h  t h e  i n i t i a l  c o n d i t i o n s  a n ( 0 )  = f n  ( n = l , - - . t N )  

The s p e c t r a l  approximation ( 1 . 5 - 6 )  t o  (1.1) i s  an ex- 

ceed ing ly  good approximation f o r  any t > 0 as  N + . 
I n  f a c t ,  t h e  error u ( x , t )  - u N ( x , t )  goes t o  z e r o  more r a p i d l y  

t h a n  e - N t  a s  N + m  f o r  any t > 0 . I n  c o n t r a s t ,  a f i n i t e  

d i f f e r e n c e  approximation t o  t h e  hea t  e q u a t i o n  u s i n g  N g r i d  p o i n t s  

2 

- 2 -  

i 

2 -n t a n ( t )  = f n  e (n=1 ,2 , . . . , )  ( 1 . 3 )  - 

71 

f n  = i / f ( x )  s i n  nx dx  (n=1,2 , . . . , )  

0 

( 1 . 4 )  

are  the  c o e f f i c i e n t s  of t h e  F o u r i e r  s i n e  series expansion of 

f ( x ) .  R e c a l l  t h a t  any f u n c t i o n  i n  L2(0,n) h a s  a F o u r i e r  s i n e  

series t h a t  converges t o  it i n  

of any piecewise cont inuous  f u n c t i o n  f ( x )  which h a s  bounded 

L 2 ( 0 , n ) ;  t h e  F o u r i e r  s i n e  series 

I 
v a r i a t i o n  on ( 0 , ~ )  converges t o  z [ f ( x + ) + f ( x - ) ]  th roughout  

(0,~) (see Sec t ion  3 ) .  

A spectral  approximation is g o t t e n  by s imply t r u n c a t i n g  

( 1 . 2 )  t o  
N 

u , (x , t )  = 1 a n ( t ) s i n  nx 
n = l  

(1.5) 

and r e p l a c i n g  (1.3)  by t h e  e v o l u t i o n  e q u a t i o n  

2 - - -  - n an dan 
d t  



.. 

in x but leaving t as a continuous variable (a ‘semi- 

discrete’ approximation) leads to errors that decay only 

algebraically with N as N + m. [Of course, if we solve 

(1.6) by finite differences in t the error of the spectral 

method would go to zero algebraically with the time step At. 

However, we shall neglect all time differencing errors for now 

and study only the convergence of semi-discrete approximations. 

Time-differencing methods are discussed in Section 10.1 

Example 1.2: Fourier sine series solution of an inhomogeneous 

heat equation. 

Not all spectral methods work as well as the trivial one 

just outlined in Example 1.1. Consider for example the solution 

to the problem 

with the same initial and boundary conditions as before. 

The Fourier sine coefficients of the exact solution are now 

-nLt L 

en a,(t) = fn e-” + - (1-e 3 m 
(1.7) 

where en = 0 if n is even and en = 1 if n is odd. Spectral 

I approximations are now given by (1.5) with (1.6) replaced by 

n a n + -  4 e  (n=l,. . . ,N) , 2 dan - = -  
d t  rn n 



the solution of which is (1.7) for n = I, ..., N. Now the 

truncation error 

as N + 00 ; the error is of order N-3 as N -+ 00 for fixed 

u (x, t) - uN (x, t) no longer decays exponentially 

X ?  0 < x < r , and t > 0 . In other words, the results 

to be anticipated from this spectral method behave asymptotically 

. 

as N -+ in the same way as those obtained by a third-order 

finite-difference scheme [in which the error goes to zero like 
3 Ax3 = ( IT/N) I .  

The last example may be disturbing but even more serious 

difficulties confront the unwary user of spectral methods, as 

the next example should make amply clear. 

Example 1.3: Fourier sine series solution of the one- 

dimensional wave equation. 

Consider the mixed initial-boundary value problem for the 

one-dimensional wave equation 

(1.8a) 

(1.8b) 

(1.8~) 

The exact solution to this well posed problem is u(x,t) = xt. 

This solution can also be found by Fourier sine series expansion 

of u(x,t). To do this, we substitute (1.2) into (1.8) and re- 

expand all terms in sine series. The Fourier expansion of h/ax is 



where integration by parts gives 

71 
2n 1 u cos nx dx bn(t) = I sin nx dx, = - - 2 au 

0 

00 71 - - - -  2n 1 a,[t) f sin mx COS nx dx, 
0 71 n=l 

(1.09) 

(1.10) 

00 

a (t) 4 m 
71 2 2 m  n -m 

= -  1 
m = l  

m+n odd 

A l s o  the Fourier sine coefficients of x are 2/n(-1) n+l and 

the Fourier sine coefficients of t are (4t/rn)en, where en = 0 

if n is even and en = 1 if n is odd. Equating coefficients 

of sin nx in (1.8a) we obtain 

4 ( - 1 1 ~  + t en(n=1,2, . . . ) .  2 
03 

- -  4 nm 
m = l  n -m 

- - - _  - 1  - 2 2 a m  n 
dan - 
dt (1.11) 

n+n odd 

The Fourier sine coefficients of the exact solution 

u(x,t) = xt are 

an(t) = - - n (-1)"t (n = 1,2,...) 

It is easy to verify by direct substitution that these coefficients 

satisfy (1.11) exactly; in particular, the sum in (1.11) converges 

for all t. 

-5- 



Now suppose w e  employ a s p e c t r a l  method based on F o u r i e r  

s i n e  series t o  s o l v e  t h i s  problem. W e  seek a s o l u t i o n  t o  (1.8) i n  

t h e  form of t h e  t r u n c a t e d  s i n e  series ( 1 . 4 ) .  If t h e  e x a c t  co- 

eff ic ients  a n ( t )  are used  i n  (1.4) t h e n  u ( x , t )  - u N ( x , t )  -+ 0 

as N -f OD ; fo r  each f i x e d  x , 0 < x < 71,  and t > 0 t h e  

error is  of o r d e r  1 / N  as N + ~0 (.see S e c t i o n  3 ) .  

However, it is  n o t  r e a s o n a b l e  t o  assume t h a t  t h e  expans ion  

c o e f f i c i e n t s  a n ( t )  are known e x a c t l y  i n  t h i s  case because  o f  

t h e  complicated c o u p l i n g s  between v a r i o u s  n i n  t h e  system 

(1.11). I t  is more r e a s o n a b l e  t o  de te rmine  them by numer ica l  

s o l u t i o n  of an  approximation t o  (1.11). G a l e r k i n  approximation 

(see Sec. 2 )  g i v e s  t h e  t r u n c a t e d  system of  e q u a t i o n s  

. 

N Y 

(1.12) 4 7Tn ten (n=l,. . . , N )  am - - ( - I ) ~  + - nm 2 
n - = - -  1 dan 

m = l  n -m d t  7 

m+n odd 

The t r u n c a t i o n  of t h e  i n f i n i t e  system (1.11) t o  t h e  f i n i t e  

system (1.12’ i s  a s t a n d a r d  way t o  approximate i n f i n i t e  coupled 

systems.  Unfor tuna te ly ,  it does not  always work. I n  F i g s .  1.1 - 1 . 2  

w e  show p l o t s  of t h e  approximations u , ( x , t )  a t  t = 5 g iven  

by (1.4) f o r  N = 50,75. These p l o t s  are o b t a i n e d  by numer ica l  

s o l u t i o n  of ( 1 . 1 2 )  w i th  

numer ica l  s o l u t i o n  of ( 1 . 1 2 )  w e r e  so sma l l  t h a t  t i m e  d i f f e r e n c i n g  %. 

a n ( 0 )  = 0 ;  t h e  t i m e  s t e p s  used i n  t h e  

errors are n e g l i g i b l e .  I t  i s  appa ren t  t h a t  t h e  approximate s o l u -  
U 

- 6 -  



t i o n s  w i t h  N f i n i t e  do n o t  converge t o  t h e  exact s o l u t i o n  as N 

i n c r e a s e s .  The d ivergence  of t h i s  s p e c t r a l  method w i l l  be ex- 

p l a i n e d  i n  S e c t i o n  6 .  

N o t  all s p e c t r a l  methods g ive  such  poor  r e s u l t s .  A p r o p e r l y  

fo rmula t ed  and implemented s p e c t r a l  method g i v e s  r e s u l t s  of 

s t r i k i n g  accuracy  w i t h  e f f ic ien t  u s e  of computer r e s o u r c e s .  

The choice of  an a p p r o p r i a t e  s p e c t r a l  method i s  governed by 

two main c o n s i d e r a t i o n s :  

(i) Accuracy. I n  o rde r  t o  be v e r y  u s e f u l  a 

s p e c t r a l  method should  be des igned  t o  g i v e  r e s u l t s  

of fa r  g r e a t e r  accuracy  than can  be o b t a i n e d  by 

m o r e  conven t iona l  d i f f e r e n c e  methods u s i n g  s imi l a r  

s p a t i a l  r e s o l u t i o n  or degrees  o f  freedom. The c h o i c e  

of a p p r o p r i a t e  s p e c t r a l  r e p r e s e n t a t i o n  depends on t h e  

k i n d  of boundary c o n d i t i o n s  involved  i n  t h e  problem. 

(ii) E f f i c i e n c y .  I n  o r d e r  t o  be u s e f u l  t h e  spec-  

t r a l  method should  n o t  be v e r y  much less e f f i c i e n t  

t h a n  d i f f e r e n c e  methods wi th  comparable numbers of 

d e g r e e s  of freedom. For s imi la r  work, s p e c t r a l  

methods should produce much m o r e  a c c u r a t e  r e s u l t s  

t h a n  convent iona l  methods. 

I n  S e c t i o n  14, w e  p r e s e n t  a c a t a l o g  of d i f f e r e n t  s p e c t r a l  methods 

and i n d i c a t e  t h e  k i n d s  of  problems t o  which t h e y  can be m o s t  use- 

.I f u l l y  a p s l i e d .  

Many examples of e f f i c i e n t  and a c c u r a t e  s p e c t r a l  methods w i l l  

be g iven  l a t e r .  



2.  S p e c t r a l  Methods 

T h e  problems t o  be s t u d i e d  here are mixed i n i t i a l - b o u n d a r y  

v a l u e  problems of t h e  form 

+ 

where D is a spa t ia l  domain w i t h  boundary a D  , L ( x , t )  is a 

l i n e a r  ( s p a t i a l )  d i f f e r e n t i a l  o p e r a t o r  and B(x)  is  a l i n e a r  

( t i m e  independent)  boundary o p e r a t o r .  Here w e  w r i t e  (2.1-3) 

f o r  a s i n g l e  dependent  v a r i a b l e  u 

x w i t h  t h e  unders tanding  t h a t  much of t h e  fo l lowing  analy-  

sis g e n e r a l i z e s  t o  systems of e q u a t i o n s  i n  h i g h e r  space  d i -  

mensions.  Also, a t t e n t i o n  is  r e s t r i c t e d  t o  problems w i t h  

homogeneous boundary c o n d i t i o n s  because  t h e  s o l u t i o n  t o  any 

problem involv ing  inhomogeneous boundary c o n d i t i o n s  i s  t h e  sum of 

an  a r b i t r a r y  f u n c t i o n  having t h e  imposed boundary v a l u e s  and 

a s o l u t i o n  t o  a problem of t h e  form (2.1-3). The e x t e n s i o n  t o  

n o n l i n e a r  problems w i l l  be i n d i c a t e d  a t  t h e  end of  t h i s  s e c t i o n .  

and a s i n g l e  space  c o o r d i n a t e  

d 

Before d i s c u s s i n g  s p e c t r a l  methods f o r  s o l u t i o n  of (2.1-3) l e t  

us  set up the  mathematical  framework f o r  o u r  l a t e r  a n a l y s i s .  

I t  i s  assumed t h a t ,  for  each t , u ( x , t )  i s  an element  

of a Hi lber t  s p a c e  ff w i t h  i n n e r  p r o d u c t  ( , ) and norm 

1 1  1 1  . For each t > 0 , t h e  s o l u t i o n ’  u ( t )  belongs t o  

t h e  subspace 8 of ff c o n s i s t i n g  of a l l  f u n c t i o n s  u E ff 

’ !Ve w i l l  o f t e n  denote  u ( x , t )  by u ( t )  when d i s c u s s i n g  u as  
a f u n c t i o n  of t .  

-S- 



satisfying BU = 0 on aD . We do not require that u(x,O)=g(x)~ 8 

but only u(x,O)E f-f . The operator L is usually an unbounded 

differential operator whose domain is dense in H but does 

not include all functions U E tl . For example, if 

L = a/ax and a'= L2(0,1), the domain of L can be 

chosen as the set of all absolutely continuous functions on 

0 - < x - < 1 , a set that is dense in ff but smaller than ff . 
If the problem (2.1-3) is well posed, the evolution operator 

is a bounded linear operator from H to 8 . Since this 

evolution operator is bounded, its domain can be extended in 

a standard way from the domain of L to the whole space ff 

(Richtmyer and Morton, 1967, p. 34). For notational convenience 

we shall assume henceforth that L is time independent so that 

the evolution operator is exp(Lt). In this case the formal so- 

lution of (2.1-3) is 

t 
u(t) = e Lt u ( 0 )  +J eL(t-S)f(s)ds 

0 

This formal solution is justified under the conditions 

that f(t) , Lf(t) I and L2f(t) exist and are continuous 

functions of t in the norm 1 1 - 1  I for all t 2 0 (see 

Richtmyer and Morton, 1967). 
b The semi-discrete approximations to (2.1) to be studied here 

are of the form - 

-9- 



(2.5) 

where, f o r  each t , uN(x,t) belongs to an N-dimensional sub- 

space 8 of 8 , and LN is a linear operator from ff to BN 

of the form 

L N = P  L P N  (2.6) N 

and gN Here PN is a projection operator of ff onto 

when N < M . fN = PNf . We shall assume that 'N C B M  

For definiteness, we shall also assume the initial conditions for 

the approximate equations (2.5) to be uN(0) = PNu(0) where 

~ ( 0 )  = g(x) is the initial condition (2.3). Specific 

examples of projections PN and the resulting aP?roximations 
Y 

will be given belaw. 

According to this general framework, the formulation of a 
LN 

spectral method involves two essential steps: (i) the choice of 

approximation space B N ;  and (ii) the choice of the projection 

operator PN . It will turn out that the mathematical analysis 

of the methods also involves two key steps: (i) the analysis of 

how well functions in ff can be approximated by functions in 

BN (see Section 3 )  and, in particular, the estimation of 

Ilu - PNul\ for arbitrary UEH; and (ii) the study of the 

'stability' of LN (see Section 4 ) .  Finally, there are the 



important practical questions of how to time difference (see Sec- 

tion 10) and how to implement spectral methods efficiently (see 

Section 11). All these considerations will be tied togelher in 

Section 1 4  when we summarize our results on choosing a spectral method. 

Galerkin or spectral approximation 

A Galerkin approximation to (2.1-3) is constructed as follows 

(Collatz 1960, Orszag 1971a). The approximation uN is sought in 

the form of the truncated series 

(2.6) 

where the time-independent functions 9, are assumed linearly 

independent and $ n ~  8 for all n. Thus uN(x,t) necessarily 

satisfies all the boundary conditions. The expansion coefficients 

an(t) are determined by the Galerkin equations 

or 

These implicit equations for an(t) can be put into the 

standard explicit form (2 .4 -5 )  by defining the projection 

operator 'N by 

N N  

-11- 



where pnm are the elements of the inverse of the N x N 

matrix whose elements are ($n,4)m) 

which is a sliqht qeneralization of Example 1.3, it is appro- 

priate to choose the expansion functions for the Galerkin approxi- 

mates to be $ (x) = T (x) - (-l)”TC(x). n n n 
C5ebyshev polynomial of degree n definied by Tn(cose) = cos ne 

when x = cos8 ; thus, T9(x) = 1, T1(x) = x, T2(x) = 2x -1, T (x) = 

4x - 3x,...,. Observe that Qn(x) satisfies the boundary condition 

Here T (x) is the 

2 
3 

3 

-12- 
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Example 2.1: Fourier sine series 

If we choose ff = L2(0,n) and +,(XI = sin nx , we re- 

cover the Galerkin approximations given in Example 1.1-2 for the 

heat equation and in Example 1.3 for the wave equation. Every 

function u ~ L ~ ( 0 , n )  has a Fourier sine series that converges 

in the L2 norm, so that [ [ u  - Puu I I -+ 0 as N + OD. 

However, as illustrated by Example 1.3, this does not 

ensure that uN converges to u as N -+ . 
Example 2.2: Chebyshev series 

We choose ff to be the space of functions on 

the interval 

to the weight function 1/42 . If the problem is 

1x1 f 1 that are square integrable with respect 

u + u = f(x,t) (-1 < x - < 1, t > 0) , - t X 

u(-1,t) = 0 , u(x,O) = g ( x )  , 

(2.9a) 

(2.9b) 



, 

n 4. (-1) = 0 because T (-1) = (-1) for all n. The properties 

of Chebyshev polynomials are summarized in Section 15. 
n n 

The Galerkin equations (2.7) are obtained explicitly as 

follows. First the the definition of Tn(x) and the substi- 

tution x = cos 8 imply that 

{ = o s n e  c o s m e d e = - c  IT 6 
2 n nm’ (Tn,Tm) = 

0 
where 

-1 

Here C o  = 2, cn = 1 (n > 0) and 6nm = 0 if n 9 m, 1 if 

n = m. Therefore, 

Next, the Chebyshev polynomials satisfy 

as may be verified by substituting x = cos 8.  Therefore, 

n < m, m + n odd 

n > m, m + n odd 

n + m even 

Using these results, (2.7) gives the Galerkin approximation 

-13- 



N N m 1 (-1) am = -2 c aP + n d  - dan t 2(-1) 
m= 1 p=n+l dt 

p+n odd 

1 
N 

p=l 
p ap + A fn + 2(-1) n A  f o  (n=l,...,K) t 2 (-1) 

p- odd 

A 

Here fn = (T,,f) for n = 0, ... 8N. 
These Galerkin equations can be simplified by introducing 

N 
1 (-l)mam, so that (2.6) becomes 

m= 1 
the notation a. = - 

Substituting the ahove expression for ao, the Galerkin dynamical 

(2.10) 

equations can be rewritten 

N 
1 P  

2 - -  - - -  dan 
dt p=n+l 

p+n odd 

as 

1 
n 

a + fn A + c b(t) (-lIn (n=O,...,N), (2.11) 
P 

N 

n=O 
1 (-11" a = o . n (2.12) 

Here b(t) is a 'boundary' term that ensures maintenance of 

the boundary condition (2.12). Using (2.12) it is easy to show that 
.n 



Tau approximation 

The tau approximation (Lanczos 1956) is obtained by choosing the 

expansion functions to be elements of a complete set of 

orthonormal function Qn(n=l,2, ... ) . The solution uN(x,t) 

is assumed expanded in the series 

Qn 

(2.13) 

which is similar to (2.6), but now the expansion functions 

are - not required individually to satisfy the boundary con- 

straints (2.2). Here k is the number of independent boun- 

dary constraints BUN = 0 that must be applied. The constraints 

$n 

N+k 
(2.14) 

are imposed as part of the conditions determining the expansion co- 

efficients an of a function in BN. The projection operator 

PN is defined by 

(2.15) 

-15- 



where are chosen so t h a t  t h e  boundary con- 

s t r a i n t s  Bu = 0 are s a t i s f i e d .  I t  fol lows f r o m  these de- 

bm ( m = l , .  . . , k) 

f i n i t i o n s  t h a t  t h e  t a u  approximation t o  (2 .1-2)  i s  g iven  by 

( 2 . 1 3 )  w i t h  t h e  k e q u a t i o n s  ( 2 . 1 4 )  and t h e  N e q u a t i o n s  

(2.16) 

An e q u i v a l e n t  fo rmula t ion  of t h e  t a u  method is  g i v e n  a s  

fo l lows:  The e q u a t i o n s  f o r  t h e  expansion c o e f f i c i e n t s  an o f  t h e  

e x a c t  s o l u t i o n  u i n  terms of t h e  complete  or thonormal  bas i s  @n are 

(2.17)  

The t a u  approximation e q u a t i o n s  f o r  t h e  N + k  expans ion  co- 

e f f i c i e n t s  of uN i n  (2.13) are  o b t a i n e d  f r o m  t h e  f irst  N 

e q u a t i o n s  ( 2 . 1 7 )  w i t h  u r e p l a c e d  by uN and t h e  k boundary 

c o n d i t i o n s  (2.14). T h e  o r i g i n  of t h e  name ' t a u  method' i s  t h a t  

t h e  r e s u l t i n g  approximation uN 

f i e d  problem c 

i s  t h e  e x a c t  s o l u t i o n  t o  t h e  modi- 

(2.18) 
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.. 
which l i e s  i n  13 f o r  a l l  t > 0 . For each  i n i t i a l  v a l u e  

. prob len  and choice of orthonormal basis  !$n, there i s  a 

choice of r - c o e f f i c i e n t s  such t h a t  % E  B N ,  namely 

-.-- LuN-f) for p = 1 , 2 , . - - .  P = cQ,+p, a t  

Example 2: 3:  F o u r i e r  s i n e  series 

For a l l  of t h e  a p p l i c a t i o n s  g iven  i n  Example 2 . 1 ,  G a l e r k i n  

!$n =c s i n  nx are i d e n t i c a l  and t a u  approximat ions  based on 

( excep t  f o r  t h e  s c a l i n g  factor d z - )  s i n c e  t h e  or thonormal  

expansion f u n c t i o n s  Q n  s a t i s f y  t h e  boundary conditions. 

. 
u 

. 

Exanple  2 .4  : Chebyshev s e r i e s  

Tn(x)  where co = 2 , cn = 1 1 on+l(x) = -- 

(n > 0 )  and app ly  t h e  t a u  method t o  t h e  problem ( 2 . 9 )  t h e  r e s u l t  

I f  w e  choose G 
can be recast i n t o  t h e  form of equa t ions  ( 2 . 1 0 - 1 2 )  w i th  b ( t )  = 0 

and ( 2 . 1 1 )  on ly  a p p l i e d  f o r  n = O,l, ..., N - 1  i n s t e a d  of 

n=O,l,  ..., N. Thus, t h e  t a u  equa t ions  for t h e  one-dimensional 

wave problem ( 2 . 9 )  are 

N 
A 2 ( 0  < n < N - 1 )  c P a p  + fn - - dan 

d t  
- = - -  

p=n+l  
p+n odd 

(2.19) 

(2.20) 
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Example 2 .5  : Laguerre  ser ies  

c Here we choose t o  be t h e  space  of  f u n c t i o n s  c h a t  are 

s q u a r e  i n t e g r a b l e  on  0 < x < w i t h  r e s p e c t  t o  t h e  weight  

f u n c t i o n  e . W e  choose t h e  expansion f u n c t i o n s  t o  be 

- 
-X 

$,(x) = L,(x) where Ln(x)  is  t h e  (normal ized)  Laguer re  

polynomial  of deg ree  n . Ln(x)  has  t h e  p r o p e r t i e s  

(Ln,Lm’ = 6m ? LJO) = 1 , and LA - = Ln f o r  a l l  

n,m . 
LII+l 

Suppose w e  wish t o  s o l v e  

Ut + ux = f ( x , t )  ( O L X < Q J ,  t > 0 )  ( 2 . 2 1 a )  - 

by s e e k i n g  a n  approximate s o l u t i o n  of  t h e  f o r m  

N 

(2.22) 

It is r e a d i l y  v e r i f i e d  t h a t  t h e  t a u  approximat ion  ( 2 . 1 7 )  i s  

N 
- -  dan - 1 an + ( L n , f )  d t  (n=O, l ,  ..., N-1) (2.23) - 

p=n+l - 
whi le  t h e  boundary c o n d i t i o n  i s  

N 
1 a n = 0  

n=O 
( 2 . 2 4 )  



. Sjmilarly, the Laguerre-tau approximation to the heat 

equation problem 

(2.25) 

is given by (2.221, (2.24) and 

N 

p=n+l 
(n=O,l, ..., ~ - 1 )  - -  - C (p-n-lla + (~,,f) dan 

dt P 
(2.26) 

Collocation or pseudospectral approximation 

The projection operator PN for collocation [sometimes 

called the method of selected points (Lanczos 1956) or pseudospec t r a l  

approximation (Orszag 1971a)l is defined as follows. Let 

x1,x2,.,.,xhT be N points interior to the domain D. These 

points are called the collocation points. Also let 0 (x) 

(n=1,. . . ,N) 
suppose that det c$~(x~) # 0. Then for  each u E: ff 

n! 
and N be a basis for the approximation space 8 

N 

pNu = 1 an c$,(x) (2.27) 
n=l 

. 
where the expansion coefficients an are the solutions of the 

equations 
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N 
1 an $ n ( ~ i )  = u ( x i )  (i=l,. . . ,N) . 

n= 1 
(2.28)  

Thus, c o l l o c a t i o n  i s  c h a r a c t e r i z e d  by t h e  c o n d i t i o n s  t h a t  

P u (x i )  = u(xi )  f o r  i = 1,. ..,N and PNu& BN . Notice t h a t  

the r e s u l t s  of c o l l o c a t i o n  depend on  b o t h  t h e  p o i n t s  x and 

the f u n c t i o n s  $,(XI f o r  n = 1,. . . , N  . 

N 

n 

Example 2.6: - F o u r i e r  s i n e  series 

If w e  wish t o  solve t h e  problems fo rmula t ed  i n  Examples 

1.1-3 by c o l l o c a t i o n  i n s t e a d  of Gale rk in  o r  t a u  methods 

w e  p roceed  as follows. The space  ff = L2(0, . r r )  and w e  choose 

t h e  expansion f u n c t i o n s  +,(x) = s i n  nx ( n = l ,  ..., N) and t h e  

c o l l o c a t i o n  p o i n t s  

c o l l o c a t i o n  equa t ions  

x = n j / (N+l )  (]=l, ..., N). The 
j 

N 
s i n  * = u ( x . 1  ( j=1,  ..., N )  n = l  1 a n  N+1 3 ( 2 . 2 9 )  

have t h e  s o l u t i o n  

N 
(n=1 , .  . . , N )  IT j n  1 u ( x . ) s i . n  - an  - N+1 j= l  3 N + 1  

- 2 

This  r e s u l t  follows from t h e  r e l a t i o n  

N 
IT ' n  nkn - N + 1  s i n  3 s i n  N+l - - N+1 2 & j k  1 

n = l  

(2 .30)  



v a l i d  f o r  0 < j,k < N + l  . Thus ,  

N 

n = l  
pNu = 1 an s i n  nx 

where an i s  g i v e n  by (2.30). 

I t  fo l lows  f r o m  (2.29-31) t h a t  

N 
P LP u = 1 bn s i n  nx 

n= l  
N N  

2 2  an ( n = l ,  ... ,N) i f  L = 3 /ax , and 2 where bn = - n 

r n  m s i n  - N+1 
.rrm r n  

N 

am ( n = l ,  ..., N )  
cos  - N + 1  m = l  COS - - 

- 2 1  bn - ~ + 1  
N + l  

(2.31) 

m+n odd 

if L = a/ax . 
3xample 2 . 7 :  Chebyshev c o l l o c a t i o n  f o r  t h e  wave equa t ion  

Suppose w e  wish t o  s o l v e  t h e  one-dimensional wave problem 

(2.9)  u s i n g  c o l l o c a t i o n .  An appropr i a t e  b a s i s  for t h e  approxi -  

mation space  8, i s  t h e  s e t  of f u n c t i o n s  cD,(x) = Tn(x)  - (-1)"T0(x) 

( n = l ,  ..., N )  i n t roduced  i n  our d i s c u s s i o n  of Example 2 above. 

. We choose t h e  c o l l o c a t i o n  p o i n t s  t o  be t h e  extrema of t h e  

Chebyshev polynomial TN(x)  s a t i s f y i n g  1x1 5 1 . S i n c e  

TN(cos e )  = cos N e  t h e s e  extrema l i e  a t  x = cos 

j = O,...,N-1 . The p o i n t  x = - 1 is also a n  extremum of 

. 
Q 
N '  j 
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TN(x) 

because the boundary conditions for (2 .9 )  are imposed at x = -1 

but it is - not included in the set of collocation points 

so’ $n(-l) = 0 for all n . 
As in Example 2.2, the expansion coefficients an for 

N -. 
n = 1,. . . , N may be augmented by defining a. = - 2 (-l)m am 

m=l 
so that 

N 

It may easily be shown that the collocation equations for 

an(t) that follow from (2.9) are 

N 
- 

- - - -  (n=O,...,N) (2 .32)  + fn + - b(t) (-l)n 2 dan - 
n p=n+l dt * 

1 c P ap 
‘n C 

p+n odd 

(2 .33)  

I - - where fn = (Tn,f) and c = c = 2 , c = 1 (0 < n < N). 0 N n 
Here b(t) is a ‘boundary’ term that is used to ensure compliance 

with the boundary condition ( 2 . 3 3 ) .  It is easy to show that 

1 (-l)”(n2an+fn) = N 

x=-1 n=O 

N 

n= 0 
1 
G b(t) = - 



The reader should observe the close similarity between the 

Chebyshev Galerkin, tau, and collocation equations for the problem 

(2.9). The only difference between them is the way the boundary 

term b(t) enters. In the Galerkin equations (2.11), b(t) appears 

with the coefficient (-l)n/cn; in the tau equations b(t) enters 

with the coefficient 6nN so it appears only in the equation for 

as a tau coefficient; with collocation, the coefficient of aN 
n -  b(t) is 

for the wave equation can also be seen by observing that when 

f(x,t) is a polynomial of degree N in x, all three approxi- 

mation methods give Nth degree polynomial approximations uN(x,t) 

that satisfy exactly the initial value problem 

(-1) /cn. This close similarity between the three methods 

( 2 . 3 4 )  

UN(O,t) = 0 . 

In the tau method, Q,(x) = T N ( x ) ;  in collocation, 

N 
IT (x-x.) = 2 - T , ( x )  = - 1 21-N (x-1)Ti (x) 1 (-l)n+N N-1 2-N 

N C 3 QN(x) = 
j = O  n=O n 

where x = cos - 'j (j = 0 , .  . . , N - 1 )  are the collocation points; j N 
finally, the Galerkin equations (2.10) are obtained if 
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For all three methods ~ ( t )  is uniquely determined by the 

requirement that uN(x,t) be a polynomial of degree N in x 

for all t. 

Example 2.8: 

To illustrate further the nature of the differences between 

Chebyshev spectral methods for the heat equation 

Galerkin, tau and collocation methods, we apply them to the 

heat equation 

2 au a u 
2 

- = -  
at ax 

+ f(x,t) (-1 < x < 1 , t > 0) 

u(-1,t) = u(1,t) = 0 (t > O)., u(x,O) = g(x) (-1 < x < 1). 

We approximate u (x, t) by 

The Galerkin, tau, and collocation equations for an(t) are all 

of the form 

h 2 2  N 
dan - - 1 p ( p  -n )a +fn(t)+bl(t)Bln+b2(t)B2n 
dt- C n p=n+2 P 

ptn even 

N N 

n= 0 n= 0 
C a n = 1 ( - 1 1 ~  a n = 0 , 

(2.35) 

(2.36) 

-24- 
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A 

.) where fn = (Tn,f). Eqs. (2.36) are just a restatement of 

u (+l,t) = 0. The terms bl(t) and b2(t) in (2.35) are N 
boundary terms that ensure compliance with the boundary condi- 

tions (2.36). The only differences between the three approximation 

methods lies in the coefficients Bln and B2n. 

In the tau method, 

In the Galerkin method, 

(2.37a) 

(2.37b) 
c 

x i  this result follows using the expansion functions 

that satisfy Qn(+l) = 0 and augmenting the expansion coef- 

and a = - 1 a2n+l . 1 ficients an for n - > 2 by a. = - 1 a2n 
Finally, with collocation performed at the points x = cos - 
(j = 1,2,...,N-l) the coefficients Bln and B2n in (2.35) 

are given by 

j N 

(2.37~) 
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It may also be verified that the boundary terms bl(t) 

and b2(t) are of the form 

2 N 

x=-1 
a u  + 1 (-l)nf", a~ + 1 fn + Ci- -1 

2 N 

ax n= 0 n=O ax2 I bi(t) = Ci+ 

for i = 1,2. Here 

CI+ = -3 J 

c2+ = -9 J 

for  the tau method; 

N 
-1 1 c2+ = 8 

N ~ + N  

f o r  the Galerkin method; 

- c1+ - - 

c2+ = 0 

f o r  the collocation method. 

cl- = *(-1p 9 

= o  5- 
1 - - - -  c2- N 

( 2 . 3 8 )  

In the previous examples the only difference between Galerkin, 

tau, and collocation approximations is their treatment of the boundary 

terms. However, in more complicated problems, there are significant 

differences between these aPProximations. 

the influence of quadratic nonlinearity. 

The next example illustrates 
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. 
Example 2.9: Chebyshev approximations to Burgers' equation 

Chebyshev series approximations to the solution u(x,t) to 

Burgers' equation 

2 
all au - a u  
a t  ax ax2 
- +  u-- v-  (2.39) 

u(+l,t) = 0 

u(x,O) = f (XI 
. .  

are obtained by methods very similar to those for linear equations. 

In general, spectral approximations to the nonlinear equation 

are of the form 

(2.40) 

(2.41) 

where PN is a projection operator. The projection operator 

PN can be that for Galerkin, tau, or collocation approximations. 

If we write 

then the Galerkin approximation to (2.39) is given by 

+ b+(t) + b-(t) (-1ln p am a + v 1 m(m -n )am 
m=n+2 

m+n even 

- -  
'n dt - P 

b l  LN 
ipkN (OSnlN) , 

m+pln+l 
n+m+p odd 

(2.42a) 
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N N 
1 an = 1 an(-lln = o , 

n= 0 n=O 
(2.42b) 

- 
where a = c a for Iml N. The tau equations are identical 

except that (2.42a) only applies for 0 - n - N - 2 and b+ = b- = 0 .  - 
On the other hand, the collocation equations obtained using the collo- 

cation points x = cos for j = l,...,N-l are just (2.42b) and 

Iml  Iml 
< <  

j 

IPliN lPl9 
m+p?n+l m+pi 2N-n+ 1 
n+m+p odd n+m+p odd 

m=n+2 
m+n even 

- - 
where c = cN = 2 and 0 

- 
c, = 1 for n $: 0,N. Observe the appear- 

ance of the 'aliasing' t-rm as ,he second sum on the right side of 

(2.43). We shall discuss this term in more detail in Section 11. 

Example 2.10: Chebyshev approximations to ut + F(ulx = 0 

Galerkin and tau approximations to the solution to 

u + F ( U ) ~  = 0 t 
I 

(2.44) 

where F(u)  is arbitrarily nonlinear, are very unwieldy both 

to write down explicitly and to solve on a computer. On the one hand, 
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collocation equations may also be hard to write down explicitly, 

they lend themselves to ready solution without their explict form 
* 

.( being known! 

The collocation approximation to ( 2 . 4 4 )  is obtained as follows. 

We use the relation 

( 2 . 4 5 )  

Since auN/ax can be computed explicitly in terms of as a poly- 

nomial in x of degree N-1, it follows that (F(UN))~ can be 

evaluated by this formula at each of the collocation points assuming 

that F'(z) is a known function; thus, the collocation approxima- 

tion to ( 2 . 4 4 )  is determined. L 

There is a slightly different collocation procedure that can also 

be applied to ( 2 . 4 4 ) .  It has the operator form 

( 2 . 4 6 )  

which is usually not the same as the collocation approximation of 

the form (2.41) described above. However, since PNF(uN)  can be 

computed by collocation from uN and since the collocation approxi- 

mation to P?!a/ax has already been given in Example 2 . 7 ,  aUN/at is 

determined by (2 .46 ) .  The collocation approximation given by (2.41) 

o r  ( 2 . 4 5 )  differs from (2.46) by the t e r m  

. 
which is generally not zero. However, if F'(z) is not known 

accurately then ( 2 . 4 6 )  may be the only viable method. More details 

on these collocation algorithms are given in Section 11. 
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3 .  Survey of Approximation Theory 

The remarkable convergence properties of spectral methods to 

be discussed later owe to the rapid convergence of expansions of 

smooth functions in series of orthogonal functions. We present 

a summary of the relevant theory here. 

Fourier series 

The complex Fourier series of f(x) defined for 0 5 x - < 2~ 

is the periodic function 

where 

21T 
a k = - I  27r 1 f (x)e-ikxdx . 

0 

We shall show below that if f(x) is piecewise continuous and has 

bounded total variation then 

< < for 0 - x - 2n and g(x) is repeated periodically outside 

o 5 x 2 277. In particular, g(0) = g(2n) = +[f(o+)+f(2l~-)] . 
The Fourier sine series of a function f(x) defined for 

0 < x < TT is the function 

( 3 . 4 )  
. 



where 

. 
IT 

ak = - 2 I f ( x )  s i n  kx dx . 
0 R (3.5) 

The F o u r i e r  c o s i n e  series Of a f u n c t i o n  d e f i n e d  f o r  0 < x < T is  

W 

g C ( X )  = 1 ak cos kx (3.6) 
k=O 

. 

where 

71 
f ( x )  cos kx dx - 

a k - " C k  (3.7) 

w i t h  co = 2, ck = 1 (k > 0 ) .  I t  fo l lows  e a s i l y  from ( 3 . 3 )  t h a t  

if f ( x )  i s  p iecewise  cont inuous and of  bounded t o t a l  v a r i a t i o n  t h e n  

where f s ( x )  = f c ( x )  = & [ f ( x + ) t f ( x - ) ]  f o r  0 < x < T, 

f s ( - x )  = - f s ( x ) ,  f c ( - x )  = f c ( x )  

f c ( 0 )  = f ( O + ) ,  f c ( T )  = f(n-), and f s ( x )  and  f c ( x )  a r e  extended 

p e r i o d i c a l l y  o u t s i d e  t h e  i n t e r v a l  - IT < x - 

for -R < x < 0 ,  f s ( 0 )  = f S ( n )  = 0, 

< 

Convergence of  F o u r i e r  series 

- To prove ( 3 . 3 )  w e  d e f i n e  gK(x)  as t h e  p a r t i a l  sum 

k=-K 
(3.11) 

U s i n g  (3.2) and t h e  t r i gonomet r i c  sum formula 
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. 

w e  o b t a i n  
, X s i n [  ( K + & ) t ]  

gK(x)  = & J f ( x - t ) d t  

sin[4t] x-27r 
(3.12) 

The kernel s i n ( K + & ) t / s i n + t  of t h e  i n t e g r a l  (3.2) is  

g lo t t ed  f o r  several v a l u e s  OP S i n  F i g u r e  3.1. T h i s  f i g a r e  

s u g g e s t s  t h a t  when f ( x )  h a s  bounded t o t a l  v a r i a t i o n  t h e  l e a d i n g  

c o n t r i b u t i o n  t o  t h e  i n t e g r a l  a s  

hood of 

K + 00 comes from t h e  neighbor-  

t = 0 s i n c e  t h e  c o n t r i b u t i o n s  from t h e  rest of t h e  in -  - 
t e g r a t i o n  r e g i o n  should  n e a r l y  cancel due t o  t h e  r a p i d  o s c i l l a t i o n s  

of t h e  in t eg rand .  Thus, 

f o r  any f i x e d  E > 0 .  S ince  E: may be chosen small  w e  may r e p l a c e  

s i n  3 t  by 3 t  w i t h  a maximum error of  0(c3). Also s i n c e  f ( x - t )  

i s  p iecewise  con t inuous ,  w e  may assume t h a t  f ( x - t )  i s  con t inuous  

fo r  0 - t - E and - E  - t 0 w i t h  a t  worst  a jump d i s c o n t i n u i t y  < < < < 

a t  t = 0 .  Therefore  w e  may r e p l a c e  f ( x - t )  by f ( X - 1  f o r  t > 0 

and f ( x + )  f o r  t < 0 g i v i n g  



Since 

(K+3)E sin 00 

ds - sin ds = 8 (K+w) ' I  IT S TI S TI s 
1 E sin(K+*)s 

a s = - /  

0 0 c) 

for any fixed E > 0, we find that 

c 

proving ( 3 . 3 ) .  

In the neighborhood of a point of discontinuity of f(x) 

[or x = 0 and x = 271 if f (O+) 4 f ( 2 ~ - 1 1  the convergence 

of gK(x) to its limit ( 3 . 3 )  as K + 05 is not uniform. To 

investigate the detailed approach of gK(x) to g(x) near a 

point of discontinuity xo of f(x), we use the asymptotic 

integral representation ( 3 . 1 3 )  to obtain 

for every fixed z .  Since E is assumed small we can approxi- 

mate f(xo+s) by f (xo+) f o r  0 < s < E and by f (xo - )  f o r  

-E < s < 0. T h e r e f o r e ,  f o r  each f i x e d  z and E ,  
. 
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2 E ( K + + )  
( K- 1 f (Xo4 sin s dx f S 

f (xo+) 
sin s ds + f s IT 

- - 
IT 

f(xo-) O3 sin s f(x~+) sin s dx + f - ds 
--b IT I s  1T S 

m 

Since 1 sin s/s  ds = IT, we obtain 
-Q) 

2 1 gK(x0+ -) 2, i)[f (xo+)+f (xo-)l + ?[f(x0+)-f (xo-)l Si(z) 
K + 3  

(3.14a) 

for anv fixed z .  Here the sine integral Si(z1 is defined 

si(z) = -- 
2 

(3.14b) sin s ds 1 
-.. 0 S 

1 A plot of = Si(z) is given in Figure 3.2. 
The result (3.14) shows that if x - xo = O(g) 1 as K + 00 then 

gK(x) - *[f  (xo+)+f (xo-)] = 0 (1). 

converqence of gK(x) to f(x) in the neighborhood of the discon- 

tinuity xo. The detailed description of this nonuniform limit 

given by (3.14) is called the Gibbs phenomenon. To illustrate the 

Gibbs phenomenon in an actual Fourier series, we plot in Figure 

3.3 the partial sums of the Fourier sine series expansion of the 

function 

This shows the nonuniformity of 

f (x) = x/IT (O<X<?T) 

The extended function fs(x) is discontinuous at x = T leading 

to the Gibbs phenomenon there. 
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As K + a, the maximum error of the partial sums of a Fourier 

(complex or sine or cosine) series in the neighborhood of a point 

of discontinuity occurs at the maximum of Si(z) given by (3.14b). 

Since Si'(z) = 0 when z =  IT f o r  n = +1,+2,..., the maximum 

error must occur at one of these points. It is easy to argue that 

the maximum of Si(z) actually occurs at z = IT where 

(3.15) 1 - Si(ITr) . 5 8 9 4 9  IT 

Thus the maximum overshoot of the partial sums of the Fourier 

for K series near a discontinuity occurs near x = xo + - IT 

K+ 8 
large and is of magnitude 

g ( x + L  ) - f (x,+) Q .O8949  [f (x,+) -f (x0-) ] 
K++ 

(3.16) 

where the quantity in square brackets is the jump at 

example ploted in Figure 3.3 the jump of f (x) at x = TT has 

magnitude 2 so the Fourier series gives a local overshoot of 

magnitude 0.179. 

xo. For the 

S 

As z + + a  , Si(z) -t 2 +IT so that (3.14) is consistent with 

the convergence of the Fourier series to 

of xo and to f(xo-) just to the left of xo. The Gibbs phenomenon 

only appears when x + xo at the rate 1/X as K -t 33. 

f(xo+) just to the right 

Rate of Convergence of Fourier Series 

If f(x) is smooth and periodic, its Fourier series does not 

exhibit the Gibbs phenomenon. The Fourier series of f(x) con- 

verges rapidly and uniformly. If f(x) has continuous derivatives 
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of order p = 0,1,. . . ,n-1 ani! f (n) (x) is intesrable, then 

by applying integration by parts to (3.2) and recalling the . 
Riemann-Lebesgue lemma, we obtain 

ak < <  l/kn (k -t +a) (3.17) 

Here continuity of f (x) also requires f (') (0) = f (') (21~) . 
For example, if f ( x )  is continuous with f(0) = f(21~) and 

f' (x) is integrable then ak << l/k as k -+ 00 ; if, in addition, 

f l ( x )  is piecewise continuous and f" is integrable then 

ak 
2 = O(l/k ) as k + 00.  

Now we can be more precise in our estimates of the error 

gK(x) - f (x) . If ak goes to zero like l/kn as k -+ 00 then 

(XI is discontinuous. In this case, (n-1) 

(n-1) when x is fixed away from a point of discontinuity of f 

as K -+ 09 , while 

(3.19) 

1 when x - xo = O ( F )  as K -+ 00 where xo is a point of 

(XI 
discontinuity of f (n-1) 

d 
In particular, if f ( x )  is infinitely differentiable and 

periodic [f (x+27r) = f (x) J , gK(x)  converges to f (x) more 

rapidly t h a n  any finite power of 1/K as K -f Q) for all x . . 
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Fourier sine and cosine series have convergence properties 

very similar to the complex Fourier series just discussed. We 

summarize these properties for Fourier cosine series. If deri- 

vatives of f(x) of order p = O , l ,  ..., n-1 are continuous for 

0 < x < T while f("(0) = ) = 0 for all - odd p < n 

and f (n) (x) 

given by ( 3 . 7 )  satisfy 

is integrable, then the Fourier cosine coefficients 

( 3 . 2 0 )  

as may be sroven by integration by parts. 

Thus, if f(x) is infinitely differentiable for 0 < x < IT - - 
and f (2P+l) (0) = f (2p+1) (IT) = 0 for p = O,l, ... then the 

Fourier cosine coefficients a approach zero more rapidly 

than any power of l/k as k + + = . In other words, if f (x) 

is infinitely differentiable on -00 < x - < a, periodic with period 

  IT If (x+27i) = f ( x ) l  , and even [ f ( x )  = f ( - x ) ] ,  

then the remainder after N terms of the Fourier cosine series 

(3.6) goes to zero more rapidly than any finite power of 1/" 

k 

- 

as K + =  . 
To compare the convergence properties of Fourier sine and 

cosine series, we have plotted in Figures 3 . 3  and 3 . 4  some results 

f o r  the Fourier sine and cosine expansions, respectively, of 

the function x/n for 0 x - IT. As discussed above, the Gibbs 

phenomenon in the sine series expansion is evident at x = T (see 

Figure 3 . 3 ) .  Observe that the error in the N term partial sum 

goes to zero iike 1/13 as ii + CQ when x is fixed 0 - x e 7 ~ .  

< 

< 

In Figure 3 . 4 ,  we plot the er ror  between t5e M term cosine series 
2 and X/T. Observe that as N + 06 the error goes to zero like 1/N 

for 0 < x < 1~ and like 1 / N  t:hen x = 0(1/N) as N * =. 
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Chebyshev polynomia l  expans ions  

The  convergence t h e o r y  of Chebyshev polynomial  expans ions  

i s  ve ry  s i m i l a r  t o  t h a t  of F o u r i e r  c o s i n e  series. I n  f a c t ,  i f  

W 

is t h e  Chebyshev series a s s o c i a t e d  w i t h  f o r  

(3.21) 

- 1 < X < l  - - 
then G ( 0 )  = g(cos 0 )  i s  t h e  F o u r i e r  c o s i n e  series of  

F ( 8 )  = f (cos e )  fo r  0 < 8 < IT . T h i s  r e s u l t  follows from - - 
t h e  d e f i n i t i o n  of Tn(x)  : s i n c e  Tn(cos 0 )  = cos n 8, 

( 3 .  22) 

where co = 2 , c = 1 (k > 0 ) .  k 
It  fo l lows  from t h i s  close r e l a t i o n  between Chebyshev 

series and' Four i e r  c o s i n e  series t h a t  i f  

cont inuous  and i f  f ( x )  i s  of bounded t o t a l  v a r i a t i o n  f o r  

-1 - < X - < 1 then g ( x )  = T[f ( x + ) + f  ( x - ) ]  f o r  each  x (-1 < x < 1) 

and g ( 1 )  = f ( 1 - 1 ,  g ( - l )  = f ( - 1 + )  . Also, i f  ( x )  i s  

f ( x )  i s  p iecewise  

1 

con t inuous  fo r  a l l  1x1 5 1 f o r  p = 0,1,..., n-1, and f ( n )  ( X I  i s  

i n t e g r a b l e ,  then * 

~ (k  * -1. (3 .23)  a < < l / kn  k 
. - - 3 8 -  



. 

S i n c e  ( T k ( x )  I 5 1 f o r  1x1 1 , it f o l l o w s  t h a t  t h e  re- 

mainder a f t e r  K t e r m s  of the  Chebyshev series ( 3 . 2 3 )  i s  v e r y  

much s m a l l e r  t h a n  1/Kn-’ a s  K -f 0 0 .  I f  f ( x )  i s  i n -  

f i n i t e l y  d i f f e r e n t i a b l e  fo r  

Chebyshev series goes t o  z e r o  more r a p i d l y  t h a n  any  f i n i t e  

power o f  1 / K  as K -+ 00 . 

1x1 f 1 , t h e  error i n  t h e  

The m o s t  impor t an t  f e a t u r e  of Chebyshev series is t h a t  

t h e i r  convergence p r o p e r t i e s  a r e  n o t  a f f e c t e d  by t h e  v a l u e s  

of f ( x )  or i ts  derivatives a t  t h e  boundar i e s  x = f 1 b u t  

o n l y  by t h e  smoothness of f ( x )  and i t s  d e r i v a t i v e s  throughout  

-1 < x < 1 . I n  c o n t r a s t ,  t h e  G i b b s  phenomenon shows t h a t  t h e  

r a t e  of convergence of F o u r i e r  series depends on t h e  v a l u e s  .,f 

- - 

f and i t s  d e r i v a t i v e s  a t  t h e  boundaries  i n  a d d i t i o n  t o  t h e  

smoothness of f i n  t h e  i n t e r i o r  of t h e  i n t e r v a l .  The 

r e a s o n  fo r  t h e  absence of a Gibbs  phenomenon f o r  t h e  Chebyshev 

series 02 f ( x )  and i t s  d e r i v a t i v e s  a t  x = t 1 is  due t o  t h e  f a c t  

t h a t  F ( 0 )  =  COS 0 )  s a t i s f i e s  F(2P+1) (0) = F(2P+1) ( n )  = 0 

prov ided  only t h a t  a l l  d e r i v a t i v e s  of f ( x )  of order a t  m o s t  

p e x i s t  a t  x = 2 1. 

While Chebyshev expans ions  do n o t  e x h i b i t  t h e  Gibbs 

phenomenon a t  t h e  boundar ies  x = +-1 , t h e y  do e x h i b i t  t h e  

phenomenon a t  any i n t e r i o r  d i s c o n t i n u i t y  of f ( x )  . In F i g u r e  3 . 5  

w e  p l o t  t h e  p a r t i a l  s v m s  cf t h e  Chebyshev expans ions  of t h e  s i q n  

f u n c t i o n  sgn x: 

(3.24) 

Near x = 0 ,  a Gibbs phenomenon is observed wh i l e  f o r  x $: 0 t h e  

error a f t e r  N t e r m s  i s  of order  1 / N .  I n  g e n e r a l ,  t h e  loca l  
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structure of the partial sums gK(x) of Chebyshev series near 

a discontinuity of f(x) is, aside from a simple scaling given 

by (3.14): 

(K-) + --[f 1 (xo+)-f (xo-)] Si(z) 

where l x o l  < 1 and z is fixed. This equation is derived 

by a simple extension of the argument used to derive (3.14) 

[cf. (3.33) below for the explanation of the origin of the 

scale factor 1/ 1-xo 1 .  '2 

Rate of convergence of Sturm-Liouville eigenfunction expansions 

Let us consider the expansion of a function f(x) in terms 

of the eigenfunctions $n of a Sturm-Liouville problem: The 

eigenfunction $,ix) is a nonzero solution to 

= o  (3.25) 

satisfying homogeneous boundary conditions. To be sPecific in 

our discussion we assume the boundary conditons 

although the analysis applies more generally. We assume that 

p(x) - 0, w(x) - 0, q(x) - 0 for a - x - b. We will also 

assume that the eigenfunctions are normalized so that they satisfy 

@,(a) = $,(b) = 0, 

> > > < < 

and that t h e y  form a complete set; the latter property follows if 

A, -t 05 as n -t 03 (see Courant & Hilbert, 1953, p. 424). 



. 

We wish to estimate the rate of convergence of the eigen- 

function expansion 

m 

n=l 

Using the orthonormality relation (3.261, the 

N terms is 

L2- error after 

N 00 

a n = l  n=N+l 

which may be estimated by calculating the rate of decrease of 

a as n -t m. n 
Orthonormality of {$,I implies that 

b 
a = f(x)+n(x)w(x)dx . n a 

(3.27b) 

Substituting w(x) @,(x) from the Sturm-Liouville equation (3.25) 

gives 

Integrating twice by parts, we obtain 

b 1 b 
- -  - I p(x) [Qn(x)f' (x)-@;(xjf(x)l I + - f h(x1Gn(x)w(x)dx 

x=a An a an 
In 

(3.28) 



where 

(3.25) d h(x) = [- dxp ( x )  + q ( x ) f  (x)] /w(x). 

This integration by parts is justified if f is twice differentiable' 

and h is square integrable with respect to w. Under these con- 

ditions and recalling the $,(a) = g n ( b )  = 0, we obtain 

Nonsingular Sturm-Liouville problems 

To proceed further we must distinguish between nonsingu- 

lar and singular Stun-Liouville problems: a problem is non- 

singular if p(x) > 0 and w(x) > 0 throughout a s x s b .  The 

important conclusion from (3.29) is that if the Sturm-Liouville 

problem is nonsingular and if f (a) or f (b) is nonzero then 

(3.30) 

1 

(Notice that if @,(a) = 0, then Qn(x) E 0 since (3.25) is 

second-order and p(x) 0). It is well known [Courant & Hilbert 

19531 that the asymptotic behavior of the eigenvalues and eigen- 

functions of a nonsingular Sturm-Liouville problem are given by 



( 3 . 3 1 )  

( 3 . 3 2 )  

Using these relations in ( 3 . 3 0 1 ,  we find that an behaves like 
1 
n 
in the expansion (3.26) near the boundary points at which 

f (a) or f (b) 0 .  The asymptotic behavior ( 3 . 3 1 - 3 2 )  ensures 

that this Gibbs phenomenon is asymptotically the same as that for 

Fourier sine series in terms of the stretched independent variable 

as n -f Q). This behavior of an leads to the Gibbs phenomenon - 

( 3 . 3 3 )  

near x = a and a similarly stretched coordinate near x = b. 

If f(a) = f(b) = 0 then an < <  l/n as n -+ m. However, 

further integration by parts in ( 3 . 2 8 )  show that if the Sturm- 

Liouville problem is nonsingular and if h(a) or h(b) 0, 

as n + 00. In general, unless f(x) 

x = a 

1 then an behaves like -3 

satisfies an infinite number of very special conditions at 
n 

and x = b, an decays algebraically as n -t 00. 

These results on algebraic decay of errors in expansions 

based on nonsingular second-order eigenvalue problems generalize 

to higher-order eigenvalue problems. For example, the expansion 
02 - 

coefficients in a in f(x) = 1 a,bn(x), where I $  (XI} are 

the beam functions defined by 
n n n=O 
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1 behave like if f(k1) 0 (implying a Gibbs phenomenon at 

the boundaries x = kl), like - if f(?l) = 0 but f'(+l) 0, 2 n 
like 5 if f ( + l )  = f'(?l) = 0 but f"" ( ~ 1 )  0, and so on. 

n 

Singular Sturm-Liouville problems 

If p ( a )  = 0 in ( 3 . 3 0 )  then it is not necessary to require 
1 that f(a) = 0 to achieve an << - 
'n 

as n -+ OD. For this 

reason, a Sturm-Liouville problem that is singular at x = a does 

not lead to the Gibbs phenomenon at x = a. Furthermore, if the 

argument that led to ( 3 . 3 0 )  can be repeated on h (x) given by 

(3.29( [this is possible if p/w, pI/w, and q/w are bounded and 

all derivatives of f are square integrable with respect to wl 

then the boundary contribution to an from x = a is smaller 
1 than - 
n 

from x = b when the operations leading to ( 3 . 3 9 )  are repeated 

indefinitely [which is true if p(b) = 01, then an decreases 

more rapidly than any power of 

as n -+ 03. If there are no boundary contributions 
A 2  

as n + a. 
1 
n 

Fourier-Bessel series 

A Fourier-Bessel series of order 0 is obtained by choosing 

the expansion functionstobe the eigenfunctions of the singular 

Sturm-Liouville problem 

+ XnXQn = 0 (0 < x < 1) ( 3 . 3 4 )  d d@n -x - dx dx 
I 

5,(l) = 0, bn(0) finite 

Therefore, p(x) = w(x) = x in ( 3 . 2 5 )  so the problem is singular 

at x = 0, but nonsingular at x = 1. The eigenfunctions are 
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$,(XI = Jo(jonx) 

where Jo is the Bessel function of order 0 and jon is its 

- nth z e r o ,  Jo(Jon ) = 0 .  The eigenvalues An - - satisfy 
2 

Jon 

Q (n- *)TT (n-) . Jon 

The Fourier-Bessel expansion of a function f(x) is given by 

do 

g(x) = 1 an Jo(jonx) (3.35a) 
n=l 

where ( 3 . 2 7 )  implies that 

1 2 tf (t) Jo (jont)dt a =  n o 
(3.35b) 

since 

2 2 1 
f tJo (jont) dt = 3 J6(jon) . 
0 

For example, the Fourier-Bessel expansion of f(x) = 1 is 

(3.36) 

In Figure 3.6 we plot the 10, 20, and 40 term partial sums of the 

series (3.36). There are three noteworthy features of these Dlots 

that we will discuss: 

(i) A t  x = 1 there is apparently a Gibbs phenomenon. In 

fact, it is easy to show that this Gibbs phenomenon has the same 

structure as that for Fourier sine series: 

-45- 



Since J~ ( 2 )  yo ( 2 / 7 r z ) *  cos (z -+T)  as z + + w ,  the large 

n behavior of ( 3 . 3 6 )  can be asymptotically approximated by 

that of Fourier series. 

(ii) For fixed x satisfying 0 < x < 1, 

In fact, the nth - term of the series has magnitude of order l/n 

and oscillates in sign roughly every min (z, E) terms. The 

error in such an oscillating series is.of order 1 / N  after N terms. 

1 1  

(iii) At x = 0, the series converges (so there is no Gibbs 

phenomenon there) but the convergence is very slow and oscillating. - 
In fact, the error after N terms is of order (-l)N+l/fi . 
This follows because 

( 3 . 3 7 )  

This slow rate of convergence near x = 0 holds even though the 

eigenvalue problem is singular at x = 0. There are two reasons 

why Fourier-Bessel series converge slowly near x = 0. First, 

the Gibbs phenomenon at x = 1 affects the rate of convergence 

throughout 0 x 1. In fact, this is the sole source of the 

behavior ( 3 . 3 7 ) .  When f’ (XI -$. 0, slow convergence near x = 0 
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can also originate from the property that p(x) = w(x) = x gives 

p'/w = l/x which is singular at x = 0 so h(x) given by (3.29) 

is singular at x = O if f'(0) + 0. 
Chebyshev series revisited 

T h e  Chebyshev polynomials are the eigenfunctions of the singu- 

lar Sturm-Liouville problem (3.25) with p(x) = J1-x 1 , 
2 

W ( X )  = 1/jl-x I q(X) = 0, - 1 x 1, and the boundary conditions 

Qn(?l) finite. The eigenvalue corresponding to Tn (x) is 
-~ 

2 2 hn = n . Sine p/w = 1-x and p'/w = -x are both finite for 

IXlsl, it follows that the argument leading from (3.27) to (3.30) 

can be repeated on h(x) given by (3.29) so long as f (x) is 

sufficiently differentiable. Therefore, the Chebyshev series 

expansion of an infinitely differentiable function converges 

faster than any power of l/n as n + m ,  as shown above by a 

different method. 

To illustrate the convergence properties of Chebyshev series 

expansions, we study the rate of convergence of the series 

1 
sin M - (x+a) = 2 1 - Jn (MT) s i n  (Mra++nn)Tn (x) C n=O n 

1x1 5 1 

(3.38) 

Since J,(MT) -f 0 exponentially fast with n for n > M , it 

follows that (3.38) starts converging very rapidly when more 

than M terms are included (see Figure 3.7) and the conven- 

tional interpretation of these results is based on the fact 

v that sinM?r (x+a) has M complete wavelengths lying within 

1x1 5 1, Thus, in order for Chebyshev expansions to converge 

rapidly it is necessary to retain at least TI polynomials per 

wavelength (see Orszag & Israeli, 1974 for a similar discussion 

of finite difference methods). 
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Legendre series 

Legendre polynomials are the eigenfunctions of the singular 
2 Sturm-Liouville problem (3.25) with p(x) = 1-x , q(x) = 0, 

w(x) = 1 for -1 - x - 1 and the bcjundary conditions are 

= n(n+l) and its eigenfunction is Xn(x) = Pn(x), the 'n 
Legendre polynomial of degree n. Since p/w = 1 = x2 and 

p'/w = -2x are both finite for 1x1 - 1, it follows that the 
Legendre series expansion of infinitely differentiable functions 

converges faster than algebraically. 

< < 

< 

To illustrate the convergence properties of Legendre Series, 

we study the convergence of the series 

(3.39) 

It follows from (3.39) that Legendre polynomial expansions of 

smooth functions converge rapidly provided that at least 

IT polynomials are retained per wavelength. (See Figure 3.8) 

When a discontinuous function is expanded in Legendre series, 

the rate of convergence is no longer faster than algebraic. 

the neighborhood of a discontinuity, a Gibbs phenomenon occurs 

whose local structure is the same as that for Fourier series 

with a suitable stretching of the coordinate. For example, the 

Legendre series expansion of the sign function sgnx is 

In 

m 

(3.40) 



The p a r t i a l  sums Of t h i s  s e r i e s  a re  p l o t t e d  i n  F igu re  3.9. T h r e e  

f e a t u r e s  are noteworthy: 

(i) The Gib& phenomenon near  x = 0 h a s  t h e  same s t r u c t u r e  

as  t h a t  f o r  F o u r i e r  series. 

(ii) The error a f t e r  N t e r m s  behaves l i k e  1 / N  f o r  I x l < l ,  

x 0. T h i s  f o l l o w s  f r o m  t h e  fac t  t h a t  t h e  ( 2 n + l ) s t  Legendre 

c o e f f i c i e n t  i n  (3.40) s a t i s f i e s  

n (4n+3) ( 2 n ) !  a = (-1) 
22n+1 (n+l) !n! n 

and t h e  estimate 

for  1x1 <1; t h e  series ( 3 . 4 0 )  i s  an  a l t e r n a t e  series i f  x 

(3.41) 

is  f i x e d  away from ze ro  so the  error af ter  N terms i s  a t  m o s t  
1 2  o r d e r  (:) . 

(iii) The series converges only l i k e  l/fi a t  x = +1. T h i s  

f o l l o w s  from (3.41) because P n ( + l )  = (+1) f o r  a l l  n -  Thus, 

an  i n t e r i o r  Gibbs phenomenon i n  a Legendre series expansion has  

a ' long-range '  e f f e c t  i n  t h e  sense  t h a t  i t  s e r i o u s l y  a f fec ts  t h e  

r a t e  of convergence a t  t h e  endpoints  x = 21 of t h e  i n t e r v a l .  

Laguer re  expansions 

Laguerre  polynomials  a r e  t h e  e i g e n f u n c t i o n s  of (3.25) w i t h  
-h f o r  0 x < 03 w i t h  e $,(x) -X -X p ( x )  = x e  I q ( x )  = 0 ,  w(x)  = e 

bounded a t  x = 0 and a. The nth e igenva lue  i s  A n  = n and 
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the associated eigenfunction is 

nomial of degree n. If f(x) and all its derivatives are smooth 

and satisfy 

Xn(x) = Ln (x), the Laguerre poly- 

for some 0: < 3 ,  it is easy to show by retracing the derivation 

of (3.30) from (3.27) that the Legendre expansion 

n= 0 

converges faster than algebraically as the number of terms N -+ 

To illustrate the rate of convergence of Laguerre series, 

we consider the expansion of sinx: 

03 
1 IT 

sinx = 1 (n+l) /2 cos T(n+l) L,(x) 
n=O 2 

which cmvcrges for all x, 0 - < x < 03. Since 

(3.42) 

(3.43) 

[see Erdelyi et a1 1953, V o l .  11, pg. 2001 it follows that if 

N > > x, then the error after N terms at x is roughly 

e 3X 

2"2 (Nx) 

This error is small only if NRn 2 > x or N > - 1.44~. Since 

the wavelength of sinx is 27r , Laguerre expansions require 

approximately 9.06 polynomials per wavelength to achieve high 

. 



t 

. 

accuracy. 

per wavelength by using the modified Laguerre expansion 

C an~n(x)e -CtX and optimizing the choice of a.) Thus, Laguerre 

expansions require many more terms to resolve a function of given 

complexity than do other Chebyshev or Legendre expansions. 

reason is that significant weight is given to x -f + 00 in the 

Laguerre series where sinx has an essential singularity. 

(This figure may be reduced to about 6.53 polynomials 

The 

In Figures 3.10-12, we plot the partial sums of (3.42) with 

N = 10, 20, and 40 terms. Observe that the number of wavelengths 

of sinx represented accurately by (3.42) is roughly N / 9 .  

Hermite expansions 
2 -X Hermite polynomials satisfy (3.25) with p = e , q(x) = 0, 

2 2 
for - 00 < x < 0 3 ,  @,(x)e -3x bounded as 1x1 + 00. 

-X w(x) = e 

The Hermite polynomial Hn(x) of degree n is associated with 

the eigenvalue An = 2n. If f(x) and all its derivatives satisfy 

2 
f(x) = 0(eaX (1x1 -+ 03) 

for some a < Q, then the Hermite expansion 

converges faster than algebraically as the number of terms N -+ 00. 

This is proved by retracing the steps leading from (3.27) to (3.30). 

To study the rate of convergence of Hermite series, we consider 

the expansion of sinx: 

(3.44) 
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Since the asymptotic behavior of Hn(x) is given by [Erdelyi, 

et. a1 1953, vol. 11, pg. 2011 

as n + 00 for x fixed, it follows that this error after N 
CI 

XL 
log x terms of (3.44) goes to zero rapidly at x only if N 2 

This result is very bad; to resolve M wavelengths of sinx 

requires nearly M2 Hermite polynomials! [By expanding in the 

series 1 a,Hn(x)e and opthizing the choice of a, it is 
possible to reduce the number of required Hermite polynomials to 

5 .  about - T  f 7.85 per wavelength, but this is still quite poor.] 2 

2 -ax 

Because of the poor resolution properties of Laguerre and 

Hermite polynomials the authors doubt they will be of much prac- 

tical value in applications of spectral methods. 

. 



4 .  Review o f  Convergence Theory 

. 

T h e  fundamental problem of t h e  numerical  a n a l y s i s  of  

i n i t i a l  va lue  problems i s  to  f ind  c o n d i t i o n s  under which 

u,(x, t )  converges t o  u ( x , t )  as  N * 00 f o r  some t i m e  in -  

t e r v a l  0 t T and t o  estimate t h e  error IIu - uNII . 
The p r i n c i p a l  r e s u l t  is t h e  Lax-Richtmyer equivalence theorem 

which states t h a t  s t a b i l i t y  i s  equ iva len t  t o  convergence f o r  

c o n s i s t e n t  approximations to  well-posed l i n e a r  problems. 

t e r m s  s t a b l e ,  convergent,  and c o n s i s t e n t  re la te  t o  t e c h n i c a l  

p r o p e r t i e s  of t h e  approximation scheme which are de f ined  below. 

The 

An approximation scheme !2.5-6) is  s t a b l e  i f  

f o r  a l l  N where K ( t )  i s  a f i n i t e  func t ion  of t . H e r e  

t h e  o p e r a t o r  norm i s  de f ined  by 

An approximation scheme i s  convergent i f  

f o r  a l l  t i n  t h e  i n t e r v a l  0 5 t 1. T and a l l  u(0)cI-I and 

f ( t )  EH. F i n a l l y ,  an approximation scheme is c o n s i s t e n t  i f  
- 

-53- 



a s  N -+ f o r  a l l  u i n  a dense subspace o f  H . 
The foregoing d e f i n i t i o n s  are s t a n d a r d  and t h e  Lax-Richtmyer . 

theorem r e l a t i n g  them i s  very w e l l  known (Richtmyer is Morton 1967) .  

I n  t h i s  monograph w e  are confronted  wi th  some s u b t l e t i e s  i n  t h e  

a p p l i c a t i o n  of t h e s e  i d e a s  which w i l l  r e q u i r e  some e x t e n s i o n s  o f  t h e  

n o t i o n s  of s t a b i l i t y  and convergence. I n  order t o  motivate t h e s e  

e x t e n s i o n s ,  w e  o u t l i n e  h e r e  t h e  proof of t h e  Lax-Richtmyer theorem. 

L. 

To show t h a t  s t a b i l i t y  imp l i e s  convergence w e  u s e  (2 .1 )  

and (2.5)  t o  o b t a i n  

au-uN 
a t  f N  

= L N ( U - U N )  + Lu - LNU + f - 

so 

+ It :N(t-S) [Lu(s)-LN~(s)+f(s)-fN(s) I d s  ( 4 . 3 )  
0 

Using (4.1) and ( 4 . 3 1 ,  w e  g e t  

. 

( 4 . 4 )  

* 
Thus, i f  u ( t )  belongs t o  t h e  dense  subspace o f  H s a t i s f y i n g  

( 4 . 2 )  and if f ( t)  belongs t o  t h e  dense  subspace o f  H s a t i s f y -  

i n g  1 1 f  - P,fII * 0 a s  N + Q) , t h e n  I l u ( t )  - u N ( t )  1 1  + 0 



as  N + 43 . Since  a l l  s o l u t i o n s  u ( t )  of (2.1) can be 

. 

approximated a r b i t r a r i l y  w e l l  by f u n c t i o n s  s a t i s f y i n g  ( 4 . 2 )  , 
t h e  proof t h a t  s t a b i l i t y  implies  convergence is completed.  

Conversely,  t o  show t h a t  convergence implies  s t a b i l i t y ,  

w e  f irst  observe t h a t ,  f o r  any UEH , [ [ e  LNt u[l  i s  bounded 

f o r  a l l  N and each f i x e d  t . I n  fact ,  convergence i m p l i e s  

wh i l e  well-posedness r e q u i r e s  t h a t  IleLtu 1 1  is f i n i t e .  How- .. .. 
LNt ever, max[le u[I may depend on u and on t , so s t a b i l i t y  

N 
is  n o t  y e t  proved. 

H i s  a Hi lber t  space.  The p r i n c i p l e  of uniform boundedness 

To complete t h e  proof w e  u s e  t h e  f a c t  t h a t  

(Xichtmyer & Morton 1 9 6 7 )  impl ies  t h a t  i f  [ [ e  LNt u [ [  i s  bounded 

a s  N + 00 fo r  each  t and U E H  t h e n  [leLNtII is  bounded a s  

N + QJ f o r  each t . This  proves s t a b i l i t y .  

Using t h e  Lax-Richtmyer theorem, t h e  s tudy  o f  t h e  conver- 

gence o f  d i s c r e t e  approximations t o  t h e  s o l u t i o n s  o f  i n i t i a l -  

v a l u e  problems is  reduced t o  the  s tudy  of t h e  s t a b i l i t y  of t h e  

d i s c r e t e  approximations,  assuming t h e  approximations are con- 

s i s t e n t .  Thus, t h e  development of c o n d i t i o n s  for t h e  s t a b i l i t y  

of famil ies  of  f in i t e -d imens iona l  o p e r a t o r s  LN is of primary 

i n t e r e s t  i n  numerical  a n a l y s i s .  

The s i m p l e s t  c o n d i t i o n  for  s t a b i l i t y  i s  due t o  von Neumann. 

L e t  u s  suppose t h a t  t h e  H i l b e r t  space H posses ses  t h e  i n n e r  

product  (,) . I f  each LN is a normal o p e r a t o r  [ t h a t  i s ,  

t h e  a d j o i n t  LN de f ined  w i t h  r e s p e c t  t o  ( ,  1 commutes w i t h  
* 
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* * 
= L L 3 t h e n  s t a b i l i t y  is e q u i v a l e n t  t o  t h e  

L ~ L ~  N N  LN so 

von Neumann c o n d i t i o n  

ReXN C C ( 4  7 )  

where A N  is any of t h e  e i g e n v a l u e s  of any of t h e  o p e r a t o r s  

and C is a f i n i t e  c o n s t a n t  independent  of N . To prove  
* LN 

t h i s ,  we  no te  t h a t  i f  LN i s  normal, t h e n  LN and LN as 

w e l l  a s  exp(LNt)  and exp(LNt )  , are s imul t aneous ly  d i ag -  

n o l i z a b l e .  The re fo re ,  

* 

* 
L t L N t  2 (ReXN) t 

max e ( u , e  e u )  = max 
UEH ( U , U )  I l e  

where A N  a r e  t h e  e i g e n v a l u e s  o f  LN . Thus, t h e  von Neumann 

c o n d i t i o n  ( 4 . 7 )  is e q u i v a l e n t  t o  t h e  s t a b i l i t y  d e f i n i t i o n  (4.1) 

w i t h  K ( t )  = exp(2Ct )  . 
The von Neumann c o n d i t i o n  g i v e s  an  o p e r a t i o n a l  t echn ique  

compute t h e  f o r  checking s t a b i l i t y  of normal approximat ions :  

e i g e n v a l u e s  of 

v a l u e s  are bounded from above. 
L~ and check t h a t  t h e  r ea l  p a r t s  of t h e  e igen-  

Example 4 .l: Symmetric h y p e r b o l i c  system w i t h  p e r i o d i c  
boundary c o n d i t i o n s  

L e t  u s  apply  t h e  t h e o r y  j u s t  d i s c u s s e d  t o  t h e  s t a b i l i t y  

of d i f f e r e n c e  approximat ions  t o  t h e  m-component symmetric 

h y p e r b o l i c  sys t em 

a 3 x ,  t )  = A  a t  ax 
a; ( x  , t ) 

-t -t 
w i t h  p e r i o d i c  boundary c o n d i t i o n s  u ( 0 , t )  = u ( 1 , t )  . 

( 4 . 8 )  

. 



-+ 
H e r e  u is a n  m-component e i g e n v e c t o r  and A is a symmetric 
m x m ma t r ix .  

If w e  d i s c r e t i z e  i n  space  u s i n g  second-order c e n t e r e d  

d i f f e r e n c e s ,  w e  o b t a i n  

- u  
( j  = 1,2, ..., N )  au u j+ l  j-1 

a t  2Ax 
- -  ( 4  . 9) 

where u k ( t )  = u(k/N, t )  and Ax = 1/N . The system ( 4 . 9 )  

is e q u i v a l e n t  t o  t h e  system of rnN e q u a t i o n s  

h - B U  aii  
a t  - -  ( 4 .  loa)  

+ -b 
where GT = ( z l , u2 , . . . ,  uN) and B is t h e  mN x mN matr ix  
g i v e n  as  t h e  Kronecker product  

B = A @ D  ( 4  . l o b )  

where A i s  t h e  m x m m a t r i x  i n  ( 4 . 8 )  and D is t h e  
N x N matrix 

0 1 0 0 ... 0 -1 
-1 0 1 0 ... 0 0 
0 -1 0 1 ... 0 0 i . . . .  . .  1 

28x 
D = -  

: : /  i . . . .  

\ ; , , ,  -1 0 . 

D is anti-symmetric (and, hence,  normal) SO it h a s  
e igenva lues  0 and p u r e  imaginary. I n  f ac t ,  t h e  
e igenva lues  of D are i sin(2rkbxi;Ax for k = 
0,1,.. . , N - 1 .  Thus, t h e  norm of exp(Bt )  s a t i s f i e s  
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where w e  use t h e  f a c t  t h a t  A is  symmetric so it has  real  e i g e n v a l u e s ,  
I 

If t h e  approximate e v o l u t i o n  o p e r a t o r s  LN are n o t  normal, 

c o n d i t i o n s  gua ran tee ing  s t a b i l i t y  are much h a r d e r  t o  o b t a i n .  

One important  case i n  which s t a b i l i t y  c o n d i t i o n s  can  be o b t a i n e d  

is for t h e  problem s t u d i e d  i n  Example 4.1 w i t h  A no longe r  

symmetric. More g e n e r a l l y ,  suppose t h e  approximat ion  LN h a s  

t h e  form LN = A @ D N  where A is  a f i x e d  m x m m a t r i x  

( p o s s i b l y  not normal) and 

It is  e a s y  t o  show t h a t  

i s  a n  N-dimensional normal m a t r i x .  DN 

(4.11) 

DN where A N  is any of t h e  e i g e n v a l u e s  of 

To i n v e s t i g a t e  t h e  s t a b i l i t y  o f  e x p ( L N t )  w e  g e n e r a l i z e  

( 4 . 1 1 )  f u r t h e r  and seek c o n d i t i o n s  f o r  t h e  s t a b i l i t y  of a f a m i l y  

of m x m ma t r i ces  A ( w )  , where w is  a n  a r b i t r a r y  parameter .  

That  i s ,  w e  seek c o n d i t i o n s  such t h a t  

where K ( t )  is a f i n i t e  f u n c t i o n  of t .  Once t h e s e  g e n e r a l  

c o n d i t i o n s  a r e  found, t h e y  can  be s p e c i a l i z e d  t o  g i v e  s t a b i l i t y  

c o n d i t i o n s  f o r  f a m i l i e s  o f  t h e  form exp(LNt )  where L N = A @ D N  w i t h  9 

Dx normal by choosing A ( w )  = Aw where w i s  any of t h e  

e igenva lues  of any of  t h e  m a t r i c e s  
DN 



T h e b a s i c  r e s u l t  on t h e  s t a b i l i t y  o f  f a m i l i e s  of  m x m 

matrices is t h e  K r e i s s  m a t r i x  theorem (Kreiss 1 9 6 2 ) :  

For any fami ly  A ( @ )  of m x m matrices, each  of  
t h e  fo l lowing  s t a t e m e n t s  i m p l i e s  t h e  next :  

There e x i s t  symmetric m a t r i c e s  H ( w )  s a t i s f y i n g  
H ( w ) A ( w )  + A * ( o ) H ( w )  5 0 and 
I 1. H(w) , l l H ( u )  1 1  5 C fo r  some c o n s t a n t  C . 
l lexp[A(w)tl  11 C fo r  a l l  t 0 . 

( R e  X) ~ ~ ( X I - A ( w ) - l ~ ~  2 C '  f o r  some c o n s t a n t  C' 
and a l l  X s a t i s f y i n g  R e  X > 0 . 
There e x i s t  ma t r i ces  H(w) s a t i s f y i n g  (i) w i t h  

I I H ( w ) I I  5 K ( m ) C '  where C '  i s  t h e  c o n s t a n t  
appear ing  i n  (iii) and K ( m )  depends o n l y  on 
m and n o t  o n l y  t h e  fami ly  A ( w )  . 

Observe t h a t  f o r  a f a m i l y  of matrices A(@) t o  s a t i s f y  

t h e  c o n d i t i o n s  of  t h i s  theorem it is  necessa ry  t h a t  a l l  t h e  

e igenva lues  of a l l  t h e  ma t r i ces  have non-pos i t i ve  r e a l  p a r t s .  

O t h e r w i s e  t h e r e  would be  some w and some e i g e n v e c t o r  u satis- 

f y i n g  j [exp[A(w)t]<l l  -+ a, a s  t -+ v i o l a t i n g  (ii). 

-F 

The most important  r e l a t i o n  implied by t h i s  theorem is  t h e  
< 

i m p l i c a t i o n  t h a t  (iii) impl i e s  (ii) wi th  C - K ( m ) C '  Tha t  is ,  

f o r  any m x m ma t r ix  A a l l  of  whose e igenva lues  have nonposi-  

t i v e  r e a l  p a r t s  

where K ' ( m )  is a f i n i t e  func t ion  of m . 
~n e lementary  proof of  (4 .12 )  h a s  r e c e n t l y  been g iven  

by Lapfev (1975) and improved by C. McCarthy ( p r i v a t e  communica- 

t i o n  t o  G. S t r ang ,  1975) .  Lapfev obse rves  t h a t  i f  v > 0 , t h e n  
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i p  t -1 v t  OD e = -  e h t ( A I - A ) - l  dA = - e (v+ip-A) dp , (4 .13)  
*IT I_, A t  e 

I 

00 
i p  t -1 

e (v+ip-A)i j  dp 1 J-, 

a s  may be proved by s h i f t i n g  c o n t o u r s  i n  t h e  complex p l a n e .  

S ince  each e n t r y  of ( v + i y - A ) - l  i s  a r a t i o n a l  f u n c t i o n  i n  p 

of d e g r e e  a t  most m , t h e  d e r i v a t i v e s  of t h e  rea l  and imaginary 

p a r t s  of each e n t r y  can  change s i g n  a t  m o s t  4 m  t i m e s  when p 

i n c r e a s e s  from -w t o  QD . On any p - i n t e r v a l ,  s ay  a - < p - < b , 
where t h e  rea l  and imaginary p a r t s  of a n  e n t r y  i n  

are monotonic, 

- 

(v+ip-A)-’ 

the  second mean-value theorem i m p l i e s  

i j  
6 4 m  max (v+ ip -A)  5 - 

V I  

b s i n ( & )  - s i n ( a t ) ]  + f ( b )  [ I s in(b t )  - 
t 

cos u t  f ( p )  dp = f ( a )  [ 
Ja t 

. 

-1 
i j  

f o r  s o m e  c s a t i s f y i n g  a < c < b where f (p) = R e ( v + i p - A )  

Thus, f o r  a l l  i , j  

(4.14) 

I f  it is  t r u e  t h a t  t h e  m a t r i x  norm h a s  t h e  p r o p e r t y  t h a t  

I B . . I  1. C i j  fo r  a l l  i , j  i m p l i e s  I lBl l  1. l lCll  , t h e n  ( 4 . 1 4 )  

i m p l i e s  
=I 

(4.15) 
I 

Choosing v = l/t i n  (4.13-15) g i v e s  ( 4 . 1 2 )  w i th  K ’ ( m )  = 64 m . 



There  are t h r e e  important  m a t r i x  norms i n  which 

l B i j l  I cij for  a l l  i , j  imp l i e s  1 1 ~ 1 1  L llcll , namely 

t h e  m a t r i x  norms induced by t h e  L1, L2, and La v e c t o r  

norms. T h i s  i s  shown us ing  t h e  r e l a t i o n s  

m 
llB II 1 = max c / ~ ~ ~ l  

j i=l 

m m  
C C B . . x . y  11B112 = SUP ij 1 i ~ ~ x ~ ~ 2 = l  i=l j=1 

m 
IIBll, = max C l B i j l  

i j=1 

which hold f o r  a l l  matrices B . I n  o t h e r  norms I B .  . i  cij  
13 

may n o t  imply IIBll 1. l lCll  but t h e  equ iva lence  o f  a l l  m a t r i x  norms 

i m p l i e s  B 1 1  < F(m) I f C l l  f o r  some f i n i t e  f u n c t i o n  of t h e  

dimension m .  T h u s ,  ( 4 . 1 2 )  is ob ta ined  wi th  K'(m) = 6 4 m F ( m ) .  

- 

The f u n c t i o n s  K ( m )  appearing i n  s t a t e m e n t  ( i v )  o f  t h e  

Kreiss theorem and K ' ( m )  appearing i n  (4.12) need n o t  be  e q u a l .  

It  f o l l o w s  from t h e  Kreiss theorem t h a t  K ' ( m )  I K ( m )  . Kreiss 

showed only t h a t  K ( m )  = O ( m m )  a s  m -+ : t h i s  is  much too 

c o n s e r v a t i v e .  Miller & Strang  (1965) showed t h a t  K ( m )  = O(Cm) 

a s  m + a f o r  some c o n s t a n t  C > 1 . 
I n  t h e  case of a normal fami ly  of matrices A ( o )  t h e  con- 

d i t i o n s  o f  t h e  K r e i s s  matrix theorem are t r i v i a l l y  s a t i s f i e d :  

i f  t h e  e igenva lues  of A ( w )  have n e g a t i v e  real  p a r t s  t h e n  

Ilexp[A(w)t] 1 1  1 f o r  a l l  t 2 0 and w . 
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Unfor tuna te ly ,  t h e  c l a s s  of  s emi -d i sc re t e  approximat ions  

i n v e s t i g a t e d  i n  t h i s  monograph does n o t  e a s i l y  f i t  w i t h i n  t h e  

class of problems t o  which t h e  above s t a b i l i t y  c o n d i t i o n s  c a n  be 

a p p l i e d .  I n  c o n t r a s t  t o  t h e  c l a s s i c a l  problems of t h e  numer ica l  

a n a l y s i s  of d i f f e r e n c e  methods f o r  i n i t i a l - v a l u e  problems, 

s p e c t r a l  approximations LN are f r e q u e n t l y  n o t  normal nor  even 

approximately normal. [There is a n  impor tan t  e x t e n s i o n  o f  

s t a b i l i t y  a n a l y s i s  t o  non-normal approximat ions  ob ta ined  by 

f i n i t e - d i f f e r e n c e  approximat ion  t o  mixed i n i t i a l - b o u n d a r y  

v a l u e  problems. The non-normality of t h e s e  problems i s  f r e -  

q u e n t l y  induced by t h e  boundary c o n d i t i o n s  and c o n s t i t u t e s  a 

s m a l l  p e r t u r b a t i o n  of a normal approximat ion .  I n  t h i s  case, 

e x t e n s i o n s  of von Neumann s t a b i l i t y  a n a l y s i s ,  l i k e  t h a t  i n t r o -  

duced by Godunov and Ryabenkii  (see Richtmyer & Morton 1967)  

apply  I 
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5. Algebra ic  S t a b i l i t y  

I n  t h i s  s e c t i o n ,  w e  develop a t h e o r y  of s t a b i l i t y  and 

convergence which g e n e r a l i z e s  t h e  c l a s s i c a l  t h e o r y  d i s c u s s e d  

i n  Sec. 4 .  As w i l l  be shown by examples i n  Sects. 6-9, t h i s  

g e n e r a l i z e d  s t a b i l i t y  theo ry  is w e l l  s u i t e d  t o  s tudy  t h e  con- 

vergence  of s p e c t r a l  methods. 

A s p e c t r a l  approximation 

- -  - L u  + f N  aUN 
a t  N N  

t o  t h e  i n i t i a l - v a l u e  

a l g e b r a i c a l l y  s t a b l e  

I1 eLNt I[ I 
f o r  a l l  s u f f i c i e n t l y  

a r e  f i n i t e  f o r  0 1. 

It may a t  f i r s t  

problem ut = Lu + f i s  c a l l e d  

a s  N + i f  

l a r g e  N , where r ,  s, and K(t) 

t l T .  

seem t h a t  t h e  Lax-Richtmyer theorem shows 

t h a t  a l g e b r a i c a l l y  s t a b l e  approximations cannot  be  convergent  

u n l e s s  (5 .2)  h o l d s  w i t h  r IO, s 5 0 . I n  f a c t ,  if w e  

demand t h a t  t h e  approximations converge f o r  a l l  u ( 0 )  and 

f (t) i n  t h e  H i l b e r t  space  % ,  t h i s  conc lus ion  i s  correct. 

However, it is  p o s s i b l e  f o r  approximations t h a t  s a t i s f y  (5 .2)  

w i t h  r > 0 or  s > 0 t o  converge on a dense  s u b s e t  of 

t h e  H i l b e r t  space  i n  which t h e  o n l y  f u n c t i o n s  f o r  which con- 

- 

vergence  i s  n o t  ob ta ined  a r e  h ighly  p a t h o l o g i c a l .  I n  f a c t ,  if 

p = r + ST > 0 b u t  p is smal le r  t h a n  t h e  o r d e r  of t h e  
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s p a t i a l  t r u n c a t i o n  error of  a p a r t i c u l a r  s o l u t i o n  u ( x , t )  , i .e .  

for a l l  0 t T , t h e n  ( 4 . 4 )  and (5.2) imply t h a t  

f o r  0 5 t 5 T . Thus, a l g e b r a i c  s t a b i l i t y  i m p l i e s  con- 

vergence i n  t h a t  subspace  o f  )$ s a t i s f y i n g  t h e  c o n d i t i o n s  

( 5 . 3 ) .  I f  t h i s  l a t t e r  subspace i s  large enough, an  a l g e b r a i c -  

a l l y  s t a b l e  method can  s t i l l  be  ve ry  u s e f u l  a l though  it canno t  

y i e l d  convergent  r e s u l t s  f o r  a l l  i n i t i a l  c o n d i t i o n s  u ( 0 )  and 

f o r c e s  f ( t )  . S i n c e  s p e c t r a l  methods are normally i n f i n i t e -  

o r d e r  accurate, a l g e b r a i c  s t a b i l i t y  i m p l i e s  convergence f o r  

such s p e c t r a l  methods. 

I n  t h e  examples of a l g e b r a i c  s t a b i l i t y  g i v e n  i n  Sects. 7-9,  

w 

1 w e  f i n d  r 5 , s 5 0 , and K ( t )  M . I n  t h i s  case, 

a l g e b r a i c  s t a b i l i t y  i m p l i e s  convergence so l o n g  as (5.3)  h o l d s  
I w i t h  p 5 . Thus, t h e  approximat ion  need n o t  be  i n f i n i t e -  

o r d e r  accurate t o  a c h i e v e  convergence. However, w e  deve lop  t h e  

g e n e r a l  theory o f  a l g e b r a i c  s t a b i l i t y  h e r e  i n  t h e  e x p e c t a t i o n  

t h a t  it w i l l  f i n d  a p p l i c a t i o n  to  s p e c t r a l  methods for high-order  
9 

equa t ions  i n  which p may be  l a r g e .  
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R 

.. 

Our d e f i n i t i o n  of a l g e b r a i c  s t a b i l i t y  i s  v e r y  s i m i l a r  

t o  t h e  no t ion  of s - s t a b i l i t y  in t roduced  by S t r a n g  ( 1 9 6 0 ) .  

However, ou r  m o t i v a t i o n  i s  s l i g h t l y  d i f f e r e n t .  S t r a n g  i n t r o -  

duced s - s t a b i l i t y  t o  s tudy  t h e  convergence of t i m e - d i s c r e t i z e d  

i n i t i a l - v a l u e  problems i n  which t h e  norm o f  t h e  e v o l u t i o n  

o p e r a t o r  grows as a p o w e r  o f  t h e  t i m e  s t e p .  W e  s h a l l  r e t u r n  

t o  t h i s  concept  of s - s t a b i l i t y  i n  Sec. 1 0 .  

L e t  u s  give an i l l u s t r a t i o n  of t h e  need for a t h e o r y  of 

a l g e b r a i c  s t a b i l i t y .  I n  Sec.  8,  w e  w i l l  d i s c u s s  Chebyshev 

polynomial  spectral methods t o  solve t h e  one-dimensional 

wave equa t ion  ut + ux = f (x, t) w i t h  boundary c o n d i t i o n s  

c u ( - 1 , t )  = 0 . Unfor tuna te ly  t h i s  problem is - n o t  w e l l  posed 

i n  t h e  Chebyshev norm 
.I 

i n  f a c t ,  i f  

u(x,O) = 

Ixl 
€ 

1 -  

0 

. 

t h e n  t h e  s o l u t i o n  of 

by 

ut + u = 0, u(-1,t) = 0 at t = 1 is given X 

1-e < x 5 1 1 x  1 - - + -  
E : €  

u ( x , l )  = 
0 x L 1-€ 
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Therefore ,  a s  E -+ O+ , 

( E  -+ O+) 

a 
ax so t h a t  i f  L = - - 

I n  f a c t ,  IIeLtII = 00 f o r  o < t < 2 , IleLtll = o 
f o r  t > 2 , so t h e  one-dimensional  wave equa t ion  is n o t  

w e l l  posed i n  t h e  Chebyshev norm. 

S ince  t h e  f in i te -d imens iona l  approximat ions  LN t o  L 

g iven  by Galerkin,  t a u ,  and c o l l o c a t i o n  approximat ion  (see 

Sec. 2 )  should converge a s  N + a , it follows t h a t  w e  may 

expec t  

as N -P = i n  t h e  Chebyshev norm. T o  estimate t h e  r a t e  of  

d ivergence  of Ilexp(LNt)ll a s  N + = w e  a rgue  t h a t  

Chebyshev polynomials of degree  a t  most N can  r e s o l v e  d i s -  

t a n c e s  of at most o r d e r  1 / N  i n t e r i o r  t o  (-1,l) so w e  

may reasonably  guess on t h e  b a s i s  of ( 5 . 4 )  w i t h  E = 1 / N  t h a t  

T h i s  r e s u l t  i s  j u s t i f i e d  by t h e  numerical  r e s u l t s  presented  

i n  Table  8 . 3 .  
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c 

Thus, w e  expec t  t h a t  Chebyshev-spectral  approximat ions  

t o  t h e  one-dimensional  wave equat ion  are n o t  s t a b l e  b u t  are  

a l g e b r a i c a l l y  s t a b l e  w i t h  r = 1 / 4  and s = 0 i n  (5.2). 

Notice t h a t  a l g e b r a i c  s t a b i l i t y  i n  one  norm impl i e s  

a l g e b r a i c  s t a b i l i t y  i n  a l l  a l g e b r a i c a l l y  e q u i v a l e n t  norms. 

Thus, a l g e b r a i c  s t a b i l i t y  is e q u i v a l e n t  i n  a l l  o f  t h e  L 

norms 

e q u i v a l e n t  i n '  N-dimensional vec to r  spaces  (i.e.,  they  d i f f e r  

from each  o t h e r  o n l y  by a f ixed  p o w e r  of  

P 
because t h e s e  norms are a l g e b r a i c a l l y  1 5 p L Q) 

N ) . To show t h i s ,  

w e  recall  t h a t  t h e  L norm of a vector + a = (al, ..., a 1 
P N 

is d e f i n e d  by 

l lallp = (i;llailp) l / P  . 

by Holde r ' s  i n e q u a l i t y .  Therefore ,  f o r  a l l  p > 1 , 

. 

-67- 



A l s o ,  i f  p > 1 , t h e n  

so t h a t  

The v e r i f i c a t i o n  o f  a l g e b r a i c  s t a b i l i t y  f o r  s p e c t r a l  

methods l e a d s  t o  a g e n e r a l  problem i n  m a t r i x  t h e o r y .  Suppose 

t h a t  is  a one parameter  f a m i l y  o f  matrices. 

W e  w i l l  f i n d  c o n d i t i o n s  on t h e  members of t h e  f a m i l y  such t h a t  

exp  ( A N t )  i s  a l g e b r a i c a l l y  stable. W e  w i l l  u s e  o n l y  t h e  L2 

norm s i n c e  t h e  o t h e r s  are e q u i v a l e n t  t o  it. 

A N ( N = l ,  2,. . . ,) 

C o n d i t i o n s  f o r  A laeb ra i c  S t a b i l i t v  

L e t  {AN) be a f ami ly  o f  N x N matrices where 

IIpLNII = o m a )  ( N  * =) f o r  some f i n i t e  a . A necessa ry  

and s u f f i c i e n t  c o n d i t i o n  f o r  a l g e b r a i c  s t a b i l i t y  

i s  t h a t  t h e r e  e x i s t  a f a m i l y  {HN)  o f  Hermi t ian  p o s i t i v e -  

d e f i n i t e  ma t r i ces  such t h a t  

.- 



c ( N )  < d log N (5 .7c)  

for all s u f f i c i e n t l y  large N where b and d are f i n i t e  

numbers independent  o f  N . 
To prove s u f f i c i e n c y  w e  u s e  t h e  L i e  formula  

e (C+D) t = l i m  ( e Ct/n eDt/n 
n+co \ 

which is v a l i d  for a r b i t r a r y  

formula i s  proved a t  t h e  end 

matrices C and D . This  

of t h i s  s e c t i o n .  If w e  d e f i n e  

1 - -  1 1 
- 2  

2 + HN < HN 

(5.9) 

1 1 1 
- 7  D = [HNT AN" 

and n o t e  t h a t  
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it follows from t h e  L i e  formula t h a t  

1 1 
ANt = l i m  HN - T  k C t / n  .Dt/n 

e 
n- 

However, it follows from (5.7b) t h a t ,  s i n c e  C is a 

symmetric matrix, 

Also,  D is a n  an t i symmetr ic  m a t r i x  so t h a t  

Therefore ,  (5 .10)  g i v e s  

proving  a l g e b r a i c  s t a b i l i t y .  

I n  order t o  prove  t h a t  t h e  c o n d i t i o n s  (5.7) are a l s o  

necessa ry  f o r  a l g e b r a i c  s t a b i l i t y  w e  d e f i n e  

BN = AN - (r+l) l o g ( N ) I  . 

Therefore ,  

(N + a) . 

(5.10) 

t 
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By Liapounov's  theorem ( B a r n e t t  & S t o r e y  1974)  there e x i s t s  

a H e r m i t i a n  p o s i t i v e - d e f i n i t e  m a t r i x  such  t h a t  " 
* 

H B  + B N H N  - -1 ? (5.11) N N  

Thus I 

* 
+ AN HN = -I + 2 ( r + l )  log N HN 5 c ( N ) H N  

where c ( N )  = 2 ( r + l )  log N . I n  o r d e r  t o  complete  t h e  

proof  of (5.7) w e  need t o  estimate t h e  norms o f  HN and 
-1 

HN . 
f o r  HN is  

It can  be e a s i l y  v e r i f i e d  t h a t  a n  e x p l i c i t  formula 

* 

There fo re  I 

i f  2 llnN > 1, i . e . ,  N 2 2 . Also from (5.11) w e  o b t a i n  

-1) 2 = - (HN -1 -1 * 
B ~ H ~  + HN BN 
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so t h a t  

or 

T h i s  completes t h e  proof  of t h e  n e c e s s i t y  of ( 5 . 7 ) .  

The above r e s u l t  g ives  a method fo r  checking  numer i ca l ly  

t h e  a l g e b r a i c  s t a b i l i t y  of  a f ami ly  (AN} of matrices satis- 

f y i n g  1 1 ~ ~ 1 1  = o ( N ~ )  as N -t w : 

(i) We check t h a t  t h e  rea l  p a r t s  o f  t h e  e i g e n v a l u e s  

o f  AN a re  bounded from above by s l o g  N : 

otherwise ,  t h e  f ami ly  of matrices AN a r e  alge- 

b r a i c a l l y  u n s t a b l e .  

(ii) We i n t r o d u c e  BN = AN - ( s + i ) l o g ( N ) I  and 

compute t h e  Liapounov m a t r i x  H N  such  t h a t  

HNBN + BN HN = -I . There are  several numeri- 

tally e f f i c i e n t  t echn iques  t o  compute 

(Bar te l s  & S t e w a r t  1 9 7 2 ) .  

* 

H N  

(iii) T o  v e r i f y  a lgebraic  s t a b i l i t y  t h e  c o n d i t i o n  number 

of HN must b e  bounded by Nb f o r  some f i n i t e  b 

a s  N + ~3 . Xoting (5.12), it is  o n l y  necessa ry  

t o  v e r i f y  t h a t  t h e  e igenva lues  of H N  a re  bounded 

from ahove by some f i n i t e  power o f  N as  N +- 00 . 
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. 

T h i s  procedure  is  a p p l i e d  i n  Sec. 8 t o  v e r i f y  a l g e b r a i c  

s t a b i l i t y  of some problems. S i n c e  (5 .7 )  g i v e s  a necessa ry  

and s u f f i c i e n t  c o n d i t i o n  f o r  a l g e b r a i c  s t a b i l i t y ,  i f  these 

c o n d i t i o n s  do not hold  t h e  family of matrices AN 
b r a i c a l l y  u n s t a b l e .  

is a l g e -  

F i n a l l y ,  w e  prove t h e  L i e  formula (5.8) f o r  f i n i t e  

d imens iona l  matrices, F i r s t ,  w e  w r i t e  

n-1 (?)”( C+D n-1-k 

= C e  
k= 0 

n 
e - e e  e e  

T h e u f o r e ,  

n-1-k 

n-1 0 -  C D  
n n  n 
- -  C+D 

n 
- 

5 lie - e e l [  n e  

. where 
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On t h e  o ther  hand, 

so t h a t  

( n  -t Q)) 

1 
2 f o r  any K > - I ~ c D - D c I I  , 

Eq.  (5 .8)  i s  a lso t r u e  

matrices ( o p e r a t o r s ) .  T h i s  

proving  (5.8). 

f o r  c e r t a i n  i n f i n i t e  d imens iona l  

deep r e s u l t ,  c a l l e d  t h e  T ro t t e r  

p roduc t  formula, i s  ve ry  u s e f u l  i n  t h e  modern t h e o r y  of 

p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s .  

c - 1 . 1 -  
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Fig. 3.7. 

sin(M.rrx) t runcated a f t e r  TN(x) versus  N/M. The va r ious  symbols represent :  

0 N = 10; X N = 20; A N = 3 0 ;  0 N = 40.  Observe t h a t  t h e  L2-error approaches 

zero r a p i d l y  when 

A plo t  of t h e  L2-error i n  t h e  Chebyshev series expansion (3.38) of 

* 

N/M > T .  
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zero r a p i d l y  when N/M > iT. 
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